58 research outputs found

    Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain

    Get PDF
    Membrane water transport is critically involved in brain volume homeostasis and in the pathogenesis of brain edema. The cDNA encoding aquaporin-4 (AQP4) water channel protein was recently isolated from rat brain. We used immunocytochemistry and high-resolution immunogold electron microscopy to identify the cells and membrane domains that mediate water flux through AQP4. The AQP4 protein is abundant in glial cells bordering the subarachnoidal space, ventricles, and blood vessels. AQP4 is also abundant in osmosensory areas, including the supraoptic nucleus and subfornical organ. Immunogold analysis demonstrated that AQP4 is restricted to glial membranes and to subpopulations of ependymal cells. AQP4 is particularly strongly expressed in glial membranes that are in direct contact with capillaries and pia. The highly polarized AQP4 expression indicates that these cells are equipped with specific membrane domains that are specialized for water transport, thereby mediating the flow of water between glial cells and the cavities filled with CSF and the intravascular space

    LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes

    Get PDF
    Consolidated evidence indicates that astroglial cells are critical in the homeostatic regulation of cellular volume by means of ion channels and aquaporin-4. Volume-regulated anion channel (VRAC) is the chloride channel that is activated upon cell swelling and critically contributes to cell volume regulation in astrocytes. The molecular identity of VRAC has been recently defined, revealing that it belongs to the leucine-rich repeat-containing 8 (LRRC8) protein family. However, there is a lack of evidence demonstrating that LRRC8A underpins VRAC currents in astrocyte. Nonetheless, direct evidence of the role of LRRC8A in astrocytic regulatory volume decrease remains to be proved. Here, we aim to bridge this gap in knowledge by combining RNA interference specific for LRRC8A with patch-clamp analyses and a water-permeability assay. We demonstrated that LRRC8A molecular expression is essential for swelling-activated chloride current via VRAC in primary-cultured cortical astrocytes. The knockdown of LRRC8A with a specific short interference RNA abolished the recovery of the cell volume after swelling induced by hypotonic challenge. In addition, immunoblotting, immunofluorescence, confocal imaging, and immunogold electron microscopy demonstrated that LRRC8A is expressed in the plasma membrane of primary cortical astrocytes and in situ in astrocytes at the perivascular interface with endothelial cells. Collectively, our results suggest that LRRC8A is an essential subunit of VRAC and a key factor for astroglial volume homeostasis.-Formaggio, F., Saracino, E., Mola, M. G., Rao, S. B., Amiry-Moghaddam, M., Muccini, M., Zamboni, R., Nicchia, G. P., Caprini, M., Benfenati, V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes

    Arachnoid cysts do not contain cerebrospinal fluid: A comparative chemical analysis of arachnoid cyst fluid and cerebrospinal fluid in adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arachnoid cyst (AC) fluid has not previously been compared with cerebrospinal fluid (CSF) from the same patient. ACs are commonly referred to as containing "CSF-like fluid". The objective of this study was to characterize AC fluid by clinical chemistry and to compare AC fluid to CSF drawn from the same patient. Such comparative analysis can shed further light on the mechanisms for filling and sustaining of ACs.</p> <p>Methods</p> <p>Cyst fluid from 15 adult patients with unilateral temporal AC (9 female, 6 male, age 22-77y) was compared with CSF from the same patients by clinical chemical analysis.</p> <p>Results</p> <p>AC fluid and CSF had the same osmolarity. There were no significant differences in the concentrations of sodium, potassium, chloride, calcium, magnesium or glucose. We found significant elevated concentration of phosphate in AC fluid (0.39 versus 0.35 mmol/L in CSF; <it>p </it>= 0.02), and significantly reduced concentrations of total protein (0.30 versus 0.41 g/L; <it>p </it>= 0.004), of ferritin (7.8 versus 25.5 ug/L; <it>p </it>= 0.001) and of lactate dehydrogenase (17.9 versus 35.6 U/L; <it>p </it>= 0.002) in AC fluid relative to CSF.</p> <p>Conclusions</p> <p>AC fluid is not identical to CSF. The differential composition of AC fluid relative to CSF supports secretion or active transport as the mechanism underlying cyst filling. Oncotic pressure gradients or slit-valves as mechanisms for generating fluid in temporal ACs are not supported by these results.</p

    AQP4 and the fate of gliomas

    No full text
    High-grade glioma is the most common primary brain cancer type and is characterized by invasive and fast growth. In a previous issue of Cancer Research, Simone and colleagues show that the two isoforms of the aquaporin-4 (AQP4) water channel may determine the fate of gliomas. Glioma cell lines expressing the M23-AQP4 isoform, which forms large aggregates of orthogonal arrays of particles, shrink and undergo apoptosis, whereas cell lines expressing the tetramer-forming M1-AQP4 isoform display higher activity of matrix metalloproteinases, making them more invasive. This study provides new insight on the role of AQP4 isoforms in the biology of gliomas

    AQP4 and the Fate of Gliomas

    No full text

    Canonical Bone Morphogenetic Protein Signaling Regulates Expression of Aquaporin-4 and Its Anchoring Complex in Mouse Astrocytes

    No full text
    Aquaporin-4 (AQP4) is the predominant water channel in the brain; it is enriched in astrocytic foot processes abutting vessels where it is anchored through an interaction with the dystrophin-associated protein (DAP) complex. Enhanced expression with concomitant mislocalization of AQP4 along astrocyte plasma membranes is a hallmark of several neurological conditions. Thus, there is an urgent need to identify which signaling pathways dictate AQP4 microdistribution. Here we show that canonical bone morphogenetic proteins (BMPs), particularly BMP2 and 4, upregulate AQP4 expression in astrocytes and dysregulate the associated DAP complex by differentially affecting its individual members. We further demonstrate the presence of BMP receptors and Smad1/5/9 pathway activation in BMP treated astrocytes. Our analysis of adult mouse brain reveals BMP2 and 4 in neurons and in a subclass of endothelial cells and activated Smad1/5/9 in astrocytes. We conclude that the canonical BMP-signaling pathway might be responsible for regulating the expression of AQP4 and of DAP complex proteins that govern the subcellular compartmentation of this aquaporin

    Disassembly and Mislocalization of AQP4 in Incipient Scar Formation after Experimental Stroke

    Get PDF
    There is an urgent need to better understand the mechanisms involved in scar formation in the brain. It is well known that astrocytes are critically engaged in this process. Here, we analyze incipient scar formation one week after a discrete ischemic insult to the cerebral cortex. We show that the infarct border zone is characterized by pronounced changes in the organization and subcellular localization of the major astrocytic protein AQP4. Specifically, there is a loss of AQP4 from astrocytic endfoot membranes that anchor astrocytes to pericapillary basal laminae and a disassembly of the supramolecular AQP4 complexes that normally abound in these membranes. This disassembly may be mechanistically coupled to a downregulation of the newly discovered AQP4 isoform AQP4ex. AQP4 has adhesive properties and is assumed to facilitate astrocyte mobility by permitting rapid volume changes at the leading edges of migrating astrocytes. Thus, the present findings provide new insight in the molecular basis of incipient scar formation

    Effect of drinking oxygenated water assessed by in vivo MRI relaxometry

    No full text
    Grant Support This project was funded by the Research Council of Norway. Background Oxygen uptake through the gastrointestinal tract after oral administration of oxygenated water in humans is not well studied and is debated in the literature. Due to the paramagnetic properties of oxygen and deoxyhemoglobin, MRI as a technique might be able to detect changes in relaxometry values caused by increased oxygen levels in the blood. Purpose To assess whether oxygen dissolved in water is absorbed from the gastrointestinal tract and transported into the bloodstream after oral administration. Study Type A randomized, double‐blinded, placebo‐controlled crossover trial. Population/Subjects Thirty healthy male volunteers age 20–35. Field Strength/Sequence 3T/Modified Look–Locker inversion recovery (MOLLI) T1‐mapping and multi fast field echo (mFFE) T2*‐mapping. Assessment Each volunteer was scanned in two separate sessions. T1 and T2* maps were acquired repeatedly covering the hepatic portal vein (HPV) and vena cava inferior (VCI, control vein) before and after intake of oxygenated or control water. Assessments were done by placing a region of interest in the HPV and VCI. Statistical Test A mixed linear model was performed to the compare control vs. oxygen group. Results Drinking caused a mean 1.6% 95% CI (1.1–2.0% P < 0.001) increase in T1 of HPV blood and water oxygenation attributed another 0.70% 95% confidence interval (CI) (0.07–1.3% P = 0.028) increase. Oxygenation did not change T1 in VCI blood. Mean T2* increased 9.6% 95% CI (1.7–17.5% P = 0.017) after ingestion of oxygenated water and 1.2% 95% CI (−4.3–6.8% P = 0.661) after ingestion of control water. The corresponding changes in VCI blood were not significant. Data Conclusion Ingestion of water caused changes in T1 and T2* of HPV blood compatible with dilution due to water absorption. The effects were enhanced by oxygen. Assessment of oxygen enrichment of HPV blood was not possible due to the dilution effect. Level of Evidence 2 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:720–728
    corecore