16,806 research outputs found

    Anisotropic Transport Properties of Ferromagnetic-Superconducting Bilayers

    Get PDF
    We study the transport properties of vortex matter in a superconducting thin film separated by a thin insulator layer from a ferromagnetic layer. We assume an alternating stripe structure for both FM and SC layers as found in [7]. We calculate the periodic pinning force in the stripe structure resulting from a highly inhomogeneous distribution of the vortices and antivortices. We show that the transport properties in FM-SC bilayer are highly anisotropic. In the absence of random pinning it displays a finite resistance for the current perpendicular to stripes and is superconducting for the current parallel to stripes. The average vortex velocity, electric field due to the vortex motion, Josephson frequency and higher harmonics of the vortex oscillatory motion are calculated.Comment: 4 pages, 2figures, Submitted to PR

    Split histidine kinases enable ultrasensitivity and bistability in two-component signaling networks

    Get PDF
    Bacteria sense and respond to their environment through signaling cascades generally referred to as two-component signaling networks. These networks comprise histidine kinases and their cognate response regulators. Histidine kinases have a number of biochemical activities: ATP binding, autophosphorylation, the ability to act as a phosphodonor for their response regulators, and in many cases the ability to catalyze the hydrolytic dephosphorylation of their response regulator. Here, we explore the functional role of “split kinases” where the ATP binding and phosphotransfer activities of a conventional histidine kinase are split onto two distinct proteins that form a complex. We find that this unusual configuration can enable ultrasensitivity and bistability in the signal-response relationship of the resulting system. These dynamics are displayed under a wide parameter range but only when specific biochemical requirements are met. We experimentally show that one of these requirements, namely segregation of the phosphatase activity predominantly onto the free form of one of the proteins making up the split kinase, is met in Rhodobacter sphaeroides. These findings indicate split kinases as a bacterial alternative for enabling ultrasensitivity and bistability in signaling networks. Genomic analyses reveal that up 1.7% of all identified histidine kinases have the potential to be split and bifunctional

    Dissipation and coherent effects in narrow superconducting channels

    Get PDF
    We apply the time dependent Ginzburg-Landau equations (TDGL) to study small ac currents of frequency ω\omega in superconducting channels narrow on the scale of London penetration depth. We show that TDGL have tt-dependent and spatially uniform solutions that describe the order parameter with an oscillating part of the double frequency coexisting with an ac electric field. We evaluate the Ohmic losses (related neither to the flux flow nor to the phase slips) and show that the resistivity reduction on cooling through the critical temperature TcT_c should behave as (TcT)2/ω2(T_c-T)^2/\omega^2. If the channel is cut out of an anisotropic material in a direction other than the principal axes, the transverse phase difference and the Josephson voltage between the channel sides are generated.Comment: 5 pages, 1 figures, Accepted for publication in Phys. Rev.

    Persistent currents in mesoscopic rings and boundary conformal field theory

    Full text link
    A tight-binding model of electron dynamics in mesoscopic normal rings is studied using boundary conformal field theory. The partition function is calculated in the low energy limit and the persistent current generated as a function of an external magnetic flux threading the ring is found. We study the cases where there are defects and electron-electron interactions separately. The same temperature scaling for the persistent current is found in each case, and the functional form can be fitted, with a high degree of accuracy, to experimental data.Comment: 6 pages, 4 enclosed postscript figure

    Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures.

    Get PDF
    BackgroundChromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2) was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism.ResultsWe show that this gene actually maps to a more telomeric location and is partially duplicated within the broader region. Two highly homologous copies of an interval containing a large 5' exon and downstream sequence are located approximately 5 Mb distal to the intact locus. The duplicated copies, containing the first coding exon of APBA2, can be distinguished by single nucleotide sequence differences and are transcriptionally inactive. Adjacent to APBA2 maps a gene termed KIAA0574. The protein encoded by this gene is weakly homologous to a protein termed X123 that in turn maps adjacent to APBA1 on 9q21.12; APBA1 is highly homologous to APBA2 in the C-terminal region and is distinguished from APBA2 by the N-terminal region encoded by this duplicated exon.ConclusionThe duplication of APBA2 sequences in this region adds to a complex picture of different low copy repeats present across this region and elsewhere on the chromosome

    Chapter 14: Strategies for Mitigating Bias in Training and Development

    Get PDF
    This chapter will examine the importance of mitigating bias in training and development, which provides internal and external scanning, thus mitigating bias in selection, promotion, compensation, information sharing, and implicit biases. Further, bias in training and development arises when training participants are intentionally or unintentionally targeted because of individual aspects of the “Big 8,†consisting of race, ethnicity, sexual orientation, gender identity, ability, religion/spirituality, nationality, and socioeconomic status. Akin to research, information bias results from misleading training participants by providing incomplete information or showing imaging that is not representative of a diverse group of people. Additionally, DEIB training and development leadership and risk factors are addressed

    Ab-initio study of the bandgap engineering of Al(1-x)Ga(x)N for optoelectronic applications

    Full text link
    A theoretical study of Al(1-x)Ga(x)N, based on full-potential linearized augmented plane wave method, is used to investigate the variations in the bandgap, optical properties and non-linear behavior of the compound with the variation of Ga concentration. It is found that the bandgap decreases with the increase of Ga in Al(1-x)Ga(x)N. A maximum value of 5.5 eV is determined for the bandgap of pure AlN which reaches to minimum value of 3.0 eV when Al is completely replaced by Ga. The static index of refraction and dielectric constant decreases with the increase in bandgap of the material, assigning a high index of refraction to pure GaN when compared to pure AlN. The refractive index drops below 1 for photon energies larger than 14 eV results group velocity of the incident radiation higher than the vacuum velocity of light. This astonishing result shows that at higher energies the optical properties of the material shifts from linear to non-linear. Furthermore, frequency dependent reflectivity and absorption coefficients show that peak value of the absorption coefficient and reflectivity shifts towards lower energy in the UV spectrum with the increase in Ga concentration. This comprehensive theoretical study of the optoelectronic properties of the alloys is presented for the first time which predicts that the material can be effectively used in the optical devices working in the visible and UV spectrum.Comment: 18 pages, 7 figure

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite fermentation and distillation wastewater

    Get PDF
    Optimization of up-flow anaerobic sludge blanket (UASB) reactor operation for treatment of a composite fermentation and distillation wastewater was achieved using a locally available thickened municipal sludge instead of imported commercial anaerobic granulated sludge. Over the first 12 days, a fed batch start-up operation was maintained and anaerobic stable sludge granules with 11.2% of extra cellular polymers (ECP) were successfully developed and further used for long-term continuous operation. Two types of granules were developed within the reactor but with very different characteristics. Granules grown in the bottom part of UASB reactor were more compact and tense than those that occurred in the upper part. The latter were fragile, irregular in shape and with much lower methanogenic activities. Bottom granules were dominated by both Methanosarcina spp. and Methanosaeta spp. whereas upper granules harbored only Methanosarcina spp. During continuous anaerobic treatment of composite fermentation and distillation wastewater with organic load of 24 g.l-1 of chemical oxygen demand (COD), a removal efficiency of up to 84% was achieved. Moreover, biogas was produced with a production rate of o.52 m3/Kg COD removed.Keywords: Composite wastewater, up-flow anaerobic sludge blanket (UASB), anaerobic biological treatment, biogas, granulated anaerobic sludge, industrial wastewater.African Journal of Biotechnology, Vol. 13(10), pp. 1136-1142, 5 March, 201
    corecore