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We apply the time-dependent Ginzburg-LandausTDGLd equations to study small ac currents of frequencyv

in superconducting channels narrow on the scale of London penetration depth. We show that TDGL equations
havet-dependent and spatially uniform solutions that describe the order parameter with an oscillating part of
the double frequency coexisting with an ac electric field. We evaluate the Ohmic lossessrelated neither to the
flux flow nor to the phase slipsd and show that the resistivity reduction on cooling through the critical
temperatureTc should behave assTc−Td2/v2. If the channel is cut out of an anisotropic material in a direction
other than the principal axes, the transverse phase difference and the Josephson voltage between the channel
sides are generated.
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I. INTRODUCTION

It is common knowledge that superconductors dissipate in
the presence of the flux flow or, for large driving current
densities, due to phase slips. It is also known that even a
small ac current in zero applied field causes dissipation when
none of the above sources of dissipation are present. For
example, the resistive transition to the superconducting state
recorded with small ac currents always has a finite width
which for small enough currents and in zero field cannot
always be relegated to the flux flow, sample inhomogeneities,
or thermal fluctuations. A qualitative explanation of this dis-
sipation employs the two-fluid model with the normal and
superfluid densitiesnn andns, constant in space and time.1

Ohmic losses in superconductors are absent for small dc
currents. As was originally argued by Landau for superfluids,
the flow of quasiparticles is stopped by the latticesphononsd
or by impurities and does not contribute to the current,
whereas the creation of new excitations is prohibited by the
gap in the quasiparticle spectrum. The situation is different
for ac currents. During the ac period 2p /v, the normal part
of the Fermi liquid does not stop completely and, therefore,
causes Ohmic losses. Whenv significantly exceeds the
phase relaxation ratetJ

−1, but still is small relative to the
normal carriers relaxation ratetn

−1, the Ohmic losses should
approach their normal limit,J2/s.

These results were obtained within microscopic theory,
see, e.g., Ref. 2. In this article we show that for low frequen-
cies the time-dependent Ginzburg-LandausTDGLd equation
offers a general and simple method to approach the dissipa-
tion problem near the transition point without specific as-
sumptions on the dissipation mechanism. We show that if
superconducting wiresschannelsd are thin compared to the
London depthl and the ac current can be taken as uniform,
the order parameter acquires a part oscillating in time with
the frequency 2v, where v is the current frequency. The
order parameter modulus stays constant in space since no
vortices or phase slips are assumed to exist in zero applied

field and for sufficiently small currents. One can say that
there is a periodic exchange between the superfluid conden-
sate and the normal excitations, accompanied by an ac elec-
tric field E. In general, the phase shift between the field and
the current depends on relative values ofvtD andvtJ with
tD andtJ being the relaxation times for the order parameter
and for the phasesi.e., for the currentd. As a consequence, the
dissipation depends on these parameters too.

In anisotropic superconducting channels, the ac currents
flowing in any but the principal crystal directions cause the
electric field to have a component perpendicular to the cur-
rent, i.e., across the channel. This is due to the anisotropy of
the superconductor in use and due to anisotropy of the nor-
mal conductivity. We show that forvtJ!1 the transverse
field is caused by the transverse phase difference inherent to
anisotropic superconductors. This offers a relatively simple
probe of existence of this phase difference which has been
recently predicted.3

II. ISOTROPIC CASE

To set notations, we start with the first GL equation

− j2P2c = cs1 − ucu2/c0
2d. s1d

Here,j is the coherence length andP= ¹ +2piA /f0 with A
andf0 being the vector potential and the flux quantum. For
the order parameter written asc= feix, we have Pc
=eixs¹f + iPfd, where P is proportional to the gauge-
invariant vector potential

Q = f0 = x/2p + A = f0P/2p. s2d

Equations1d containseix on both sides. After cancelling
this factor and separating real and imaginary parts, one ob-
tains for the real part

− j2s¹2f − fP2d = fs1 − f2/f0
2d. s3d

The imaginary part coincides with divj =divf2P=0.
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The gauge-invariant form of TDGL involves the scalar
potentialw:4–6

tDS ]

]t
− i

2pc

f0
wDc = cS1 −

f2

f0
2D + j2P2c, s4d

wheretD is the order parameter relaxation time. Separating
real and imaginary parts we have

tD

]f

]t
= fS1 −

f2

f0
2D + j2s¹2f − fP2d, s5d

− tDcfF = ¹ f ·Q + ¹ · sfQd, s6d

whereF=w−sf0/2pcd]tx.

III. SPATIALLY UNIFORM SOLUTIONS OF TDGL

We are interested in coordinate independent solutionsfstd
andQistd. The systems5d and s6d then takes the form

tD

2

]u

]t
= us1 − ud − j2P2u, u =

f2

f0
2 , s7d

F = 0. s8d

This should be complemented with equations for the current.
A uniform currentJ consists, in general, of normal and su-
perconducting parts

J = sE −
2e2

Mc
f2Q, s9d

whereE is the electric field directed along the channel ands
is the conductivity for the quasiparticles flow. We aim to
describe the system response to ac currents; thens is, in
general,v dependent. If, however, the frequencies are bound
by inequalityvtn!1 with tn being the scattering time for
the normal excitations, one can considers as a real
v-independent quantity.

The electric field is expressed in terms of gauge invariant
potentials

E = − = F −
]Q

c]t
= −

]Q

c]t
s10d

so that the total current is

J = −
1

c
Ss

]Q

]t
+

2e2

M
f2QD . s11d

At a given current, Eqs.s7d and s11d form a complete
system for two functionsustd and Qstd. It is convenient to
introduce dimensionless vector potential

q = Q
2pj

f0
s12d

and to measure the current density in units of the depairing
value7 j =J/JGL with

JGL =
e2f0f0

2

pjcM
=

cf0

4p2jl2, l2 =
Mc2

4pe2f0
2 . s13d

Also, we use the so-called “current relaxation time”

tJ =
Ms

2e2f0
2 ,

nn

ns
tn. s14d

In our view, a better term for this quantity is the “phase
relaxation time” which we use in what follows, but we keep
the standard notationtJ. WhenT→Tc, tJ~1/sTc−Td and so
doestD.5 Then, the system of equations to solve takes the
form

tDu̇/2 = u − u2 − q2u, s15d

− tJq̇ − uq= j , s16d

where overdots stand ford/dt.
We are interested in calculating the system response to ac

currents J=J0 cosvt with amplitudesJ0!JGL, i.e., for j
!1. In this situation the order parameteru is close to unity
and q!1. The system to solve can be simplifiedsu<1
−v ,v!1d:

tDv̇/2 + v = q2, s17d

tJq̇ + q = − j0 cosvt. s18d

The second equation here islinear, moreover, it is decoupled
from the equation forv and is easily solved. The solution
consists of a transient part depending on initial conditions
sthe general solution of the homogeneous equationd and the
long time asymptotics of our intereststhe particular solution
of the full equationd. The latter can be readily found by look-
ing for q of the formA sinvt+B cosvt:

qst → `d = −
j0svtJ sinvt + cosvtd

1 + v2tJ
2 . s19d

This can also be written in a more familiar form

q` = −
j0

Î1 + v2tJ
2

sinsvt + ad, tana =
1

vtJ
. s20d

In the following we are interested only in the stationary long
time asymptotics and omit the subscript`.

Substituting the obtainedq in Eq. s17d we can find the
long time asymptotics forv. To this end, we look forv=v0
+v1 cos 2vt+v2 sin 2vt and obtain

v0 =
j0
2

2s1 + v2tJ
2d

, s21d

v1 =
j0
2s1 − v2tJ

2 − 2v2tJtDd
2s1 + v2tJ

2d2s1 + v2tD
2d

, s22d

v2 =
j0
2vf2tJ + tDs1 − v2tJ

2dg
2s1 + v2tJ

2d2s1 + v2tD
2d

. s23d

This yields

u = 1 −
j0
2

2s1 + v2tJ
2d

−
j0
2

2
sins2vt + bd, s24d

KAYALI, KOGAN, AND POKROVSKY PHYSICAL REVIEW B 71, 024525s2005d

024525-2



tanb =
v1

v2
. s25d

Thus, in the stationary state reached whent@maxstD ,tJd,
the order parameter has a part oscillating with frequency 2v
near the average value given in the first two terms of Eq.
s24d. Clearly, the frequency doubling is due to the order pa-
rameter independence on the current direction. The zero fre-
quency limit of Eq.s24d coincides with the known GL result
for the order parameter suppression by a dc currentu=1
− j0

2.
Oscillations of the order parameterper seare difficult to

measure. This is not the case for the electric fieldE and the
dissipation densityW=JE. The field E of Eq. s10d in the
stationary long time state is

E = −
f0q̇

2pjc
=

f0

2pjc

j0v

Î1 + v2tJ
2

cossvt + ad. s26d

The dissipation averaged over the oscillations period fol-
lows:

W̄=
pJ0

2l2v2tJ

c2s1 + v2tJ
2d

. s27d

It is worth noting that for small currents both the electric
field and dissipation are not affected by the order parameter

relaxation timetD. For vtJ!1, the fieldE~v and W̄~v2;
they arev independent forvtJ@1.

SincetJ diverges whenT→Tc, we obtain in this limit the

dissipation in the normal stateW̄=J0
2/2s, as expected. Ex-

pandingW̄ of Eq. s27d in the small parameter 1/v2tJ
2 and

keeping the first correction we obtain

W̄<
J0

2

2s
S1 −

4e4f0
4

M2s2v2D . s28d

While looking at theT dependence of the dissipation near
Tc, it should be noted that the quasiparticle conductivitys
=nne

2tn/M decreases linearly insTc−Td due to a decrease of
the quasiparticles densitynn. This causes an initial increase

of W̄, which can be considered as manifestation of well-
studied coherence effects in electromagnetic absorption.
However, for frequencies of our interestvtn!1, the “bump”

sthe maximumd in the dissipationDW̄,sJ0
2/sdv2tn

2 is situ-
ated atT<Tcs1−v2tn

2d, i.e., very close toTc. Out of this
narrow temperature domain the dissipation reduction on
cooling throughTc should behave assTc−Td2/v2.

IV. ANISOTROPIC CHANNEL

In isotropic superconductors in the presence of persistent
currents, the gauge invariant gradient¹Q= ¹x+2pA /f0 is
directed along the current. Recently Kogan and Pokrovsky
showed that in anisotropic superconductors the transverse
phase difference may appear if the driving current does not
point in any of the principal crystal directions.3 In particular,
this situation is realized in current carrying channels cut out
of anisotropic crystals with a long side in any but a principal

direction and which are narrow on the scalel. One of the
possible ways to observe the transverse phase is to measure
the voltageV generated by time-dependent phase difference
according to the Josephson formulaV=s" /2ed]DQ /]t. This
can be achieved by driving an ac current through the said
channel, a simpler possibility to observe the transverse phase
than that suggested in Ref. 3.

In the static case, the supercurrent density is given byJi
=2e"Mik

−1uDu2Pk, whereMij is the superconducting mass ten-
sor; the summation is implied over repeated indices. It is
convenient to introduce the normalized inverse mass tensor
mik=Mik

−1M with M =sMaMbMcd1/3; then the eigenvalues are
related bymambmc=1. In the uniaxial case,ma

2mc=1, the in-
verse masses can be expressed in terms of a single anisotropy
parameterg2=ma/mc: ma=g2/3, mc=g−4/3.

In the coordinates of Fig. 1, the componentsmik are

mxx = g−4/3sg2 sin2 u + cos2 ud,

myy = g−4/3sg2 cos2 u + sin2 ud, s29d

mxy = g−4/3s1 − g2dsinu cosu,

whereas mzz=mb=g2/3 and mzx=mzy=0. To describe
t-dependent situations, we again employ the TDGL model,
the generalization of which to the anisotropic situation is
straightforward: one has to replace the operatorj2P2 in Eq.
s1d with j2mikPiPk ssee, e.g., Ref. 8d. Then, we employ the
same procedure as in the isotropic case to make the model
dimensionless. The scalar quantitiesj andl now have mean-
ing of averagessjajbjcd1/3 and slalblcd1/3, respectively.

As a result, the systems15d and s16d is replaced with

tDu̇/2 = u − u2 − mikqiqku, s30d

tJsikq̇k + umikqk = − j0dix cosvt. s31d

The tensorsik=sik /s is the normalized conductivity with
s=ssasbscd1/3. As with the mass tensor, we can introduce
for the uniaxial case the conductivity anisotropy parameter
gs

2 =sa/sc so thatsa=sb=gs
2/3 andsc=gs

−4/3. With these defi-
nitions, the components ofsik are given by formulass29d in
which g is replaced withgs.

For small currents, we have forv=1−u:

− tDv̇/2 = v − mikqiqk, s32d

FIG. 1. The superconducting channel with a long dimension
alongx, the direction of an ac current. The crystal axisb is directed
alongz. The other crystal axes are in thexy plane with a misalign-
ment angleu betweenc andx.
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tJsikq̇k + mikqk = − j0dix cosvt. s33d

As in the isotropic case, the equation forqi is decoupled
from that forv. One can look for a particular solution of Eq.
s33d in the form qi =Ai sinvt+Bi cosvt to obtain a linear
system of equations forAi, Bi.

Perhaps, the easiest is to deal with Eq.s33d in the crystal
framesa,b,cd where all material tensors are diagonal. In this
frame, the equation to solve reads

tJsaq̇a + maqa = − j0a cosvt, a = a,c,

j0a = − j0 sinu, j0c = j0 cosu. s34d

The long time asymptotics is easily obtained:

qa = −
j0a sinsvt + bad
Îv2tJ

2sa
2 + ma

2
, tanba =

ma

vtJsa

. s35d

The electric field components in the channel framesx,yd and
the dissipation read

Ex =
f0j0v

2pjc Fsin2 u cossvt + bad
Îv2tJ

2sa
2 + ma

2
+

cos2 u cossvt + bcd
Îv2tJ

2sc
2 + mc

2 G ,

Ey =
f0j0v sin 2u

4pjc F cossvt + bcd
Îv2tJ

2sc
2 + mc

2
−

cossvt + bad
Îv2tJ

2sa
2 + ma

2G ,

W̄=
pJ0

2l2v2tJ

c2 F sa sin2 u

v2tJ
2sa

2 + ma
2 +

sc cos2 u

v2tJ
2sc

2 + mc
2G . s36d

Clearly, these expressions have the correct isotropic limit. It
is instructive to consider a few limiting situations.

s1d For a dc currentsv=0d, Eq. s32d gives v=mikqiqk

whereas Eq.s33d yields qi =−j0mxi
−1. We then have

u = 1 − j0
2mxx

−1, s37d

so that the order parameter suppression by a dc current de-
pends on the current direction. We will not write down a
cumbersome expression foru in the general case, but the
physics here is the same as for the isotropic case: the order
parameter has a small part oscillating with frequency 2v.

s2d vtJ!1. This situation corresponds to temperatures
not too close to the critical temperature becausetJ→` when
T→Tc. We have

W̄=
J0

2

2s
v2tJ

2S sa

ma
2 sin2 u +

sc

mc
2 cos2 uD . s38d

In the linear approximation in the smallvtJ, the time aver-
aged dissipation is absent; the energy during each period is

pumped from the condensate to the normal excitations and
back in equal amounts. The electric fields are

Ex =
f0v j0
2pjc

mxx
−1 sinvt, Ey = Ex

mxy
−1

mxx
−1 . s39d

The conductivity tensorsik does not enter these expressions.
One may say that these electric fields are due to thet depen-
dence of the phase differencessthe Josephson relation men-
tioned aboved. In particular, the very fact that the transverse
field EyÞ0 is proof of the existence of the transverse phase.
Hence, measuring the transverse and longitudinal voltages
on a channel similar to the shown in Fig. 1, one can, in
principle, verify Eq. s39d and therefore observe the trans-
verse phase difference.

s3d vtJ@1, the situation taking place in particular when
T→Tc. The dissipation of Eq.s36d reduces to a form similar
to that of the isotropic case:

W̄<
J0

2

2
sxx

−1S1 − hsud
4e4f0

4

M2s2v2D s40d

with

h = sgsg2d−4/3g4 sin2 u + gs
6 cos2 u

sin2 u + gs
2 cos2 u

. s41d

At Tc, W̄=J0
2sxx

−1/2 is the normal state dissipation. Thus, on
cooling throughTc, the resistivity drop should behave as
sTc−Td2/v2 with an angular-dependent coefficient. It should
be noted thatgs may exceed substantially the superconduct-
ing anisotropyg causing a strong angular dependence ofh.

We have also performed the linear stability analysis of our
solutions of the TDGL equation to show that the homoge-
neous solution is stable unless the current reaches the mag-
nitude of the order ofJGL. One can argue that vortices might
be generated near the boundaries at smaller currents thus
destroying the uniform time-dependent states. Without going
into a detailed discussion of this restriction, we note that our
solutions for small currents are certainly stable.
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