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We apply the time-dependent Ginzburg-Land@DGL) equations to study small ac currents of frequeacy
in superconducting channels narrow on the scale of London penetration depth. We show that TDGL equations
havet-dependent and spatially uniform solutions that describe the order parameter with an oscillating part of
the double frequency coexisting with an ac electric field. We evaluate the Ohmic (osksded neither to the
flux flow nor to the phase slipsand show that the resistivity reduction on cooling through the critical
temperaturd, should behave ad,—T)?/ w?. If the channel is cut out of an anisotropic material in a direction
other than the principal axes, the transverse phase difference and the Josephson voltage between the channel
sides are generated.
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[. INTRODUCTION field and for sufficiently small currents. One can say that
there is a periodic exchange between the superfluid conden-
It is common knowledge that superconductors dissipate isate and the normal excitations, accompanied by an ac elec-
the presence of the flux flow or, for large driving currenttric field E. In general, the phase shift between the field and
densities, due to phase slips. It is also known that even the current depends on relative valuesaaf, and wr; with
small ac current in zero applied field causes dissipation whem, and ; being the relaxation times for the order parameter
none of the above sources of dissipation are present. F@nd for the phasé.e., for the current As a consequence, the
example, the resistive transition to the superconducting staidissipation depends on these parameters too.
recorded with small ac currents always has a finite width In anisotropic superconducting channels, the ac currents
which for small enough currents and in zero field cannotflowing in any but the principal crystal directions cause the
always be relegated to the flux flow, sample inhomogeneitiesslectric field to have a component perpendicular to the cur-
or thermal fluctuations. A qualitative explanation of this dis-rent, i.e., across the channel. This is due to the anisotropy of
sipation employs the two-fluid model with the normal andthe superconductor in use and due to anisotropy of the nor-
superfluid densities,, andn,, constant in space and titie. mal conductivity. We show that fowr;<1 the transverse
Ohmic losses in superconductors are absent for small diteld is caused by the transverse phase difference inherent to
currents. As was originally argued by Landau for superfluidsanisotropic superconductors. This offers a relatively simple
the flow of quasiparticles is stopped by the lattipeonong  probe of existence of this phase difference which has been
or by impurities and does not contribute to the currentrecently predicted.
whereas the creation of new excitations is prohibited by the
gap in the quasiparticle spectrum. The situation is different
for ac currents. During the ac periodr2w, the normal part II. ISOTROPIC CASE
of the Fermi liquid does not stop completely and, therefore, 1q set notations, we start with the first GL equation
causes Ohmic losses. Whan significantly exceeds the
phase relaxation rate;*, but still is small relative to the = Sy = y(1 - |Y24R). (1)

. . _l .
normal carriers relaxation rate,~, the Ohmic losses should Here, & is the coherence length aiili= V +27iA/ ¢, with A

approach their normal limit-J?/ . . .
These results were obtained within microscopic theory,f;?ed %Orgsrm%;?;} n\]/:g:)rvsﬁ;tgenr;uagggége U\;z( ?1'“:\1/2'&1';% For

see, e.g., Ref. 2. In this article we show that for low frequen-_ ; . . .
cies the time-dependent Ginzburg-LandaldGL) equation _—eX(_Vf+|Pf), where P Is proportional to the gauge-
offers a general and simple method to approach the dissipélr-warlant vector potential

tion problem near the transition point without specific as- Q= V xI27+ A= ¢poPl27. 2
sumptions on the dissipation mechanism. We show that if _ o ) )
superconducting wirechannel are thin compared to the  Equation(1) containse* on both sides. After cancelling
London depth\ and the ac current can be taken as uniform this factor and separating real and imaginary parts, one ob-
the order parameter acquires a part oscillating in time wit@ins for the real part

the frequency @, where w is the current f_requency. _The - (V% - fP2)=f(1—f2/f(2)). (3)
order parameter modulus stays constant in space since no

vortices or phase slips are assumed to exist in zero appliebhe imaginary part coincides with giwdivf?P=0.
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The gauge-invariant form of TDGL involves the scalar Mo n
ol - 4-6 =~ (14)
potential ¢:*~ = 2e2f§ nST”'
d .2mcC f2 . : - )
o -i——ely=yl1-5 + EI1%y, (4) In our view, a better term for this quantity is the “phase
ot bo fo relaxation time” which we use in what follows, but we keep
where, is the order parameter relaxation time. Separatingh® Standard notation,. WhenT—T, 7,1/(T.~T) and so
real and imaginary parts we have does,.% Then, the system of equations to solve takes the
form
af 2\, 5
TAE—f 1_f_g +§(Vf—fp), (5) TAU/Z:U—UZ—qzu, (15)
- cfd=Vi-Q+V - (fQ), (6) -7q-uq=j, (16)
where® =@ (¢ho/ 27C) dpx. where overdots stand fal/dt.
We are interested in calculating the system response to ac
Ill. SPATIALLY UNIFORM SOLUTIONS OF TDGL currents J=J, coswt with amplitudesJy<Jg, i.e., for j
We are interested in coordinate independent solutigns <1 In this situation the order parameteis close to unity
andQ,(t). The systen(5) and (6) then takes the form and qjﬁ. The system to solve can be simplifi¢gd=1
-v,0<kl]):
TA Ju _ _ fz .
oS- - £P%, u= =1 (7 Ta0I2 +v =P, (17)
®=0. (8) 730+ =—]jo COSwt. (19

This should be complemented with equations for the current! he second equation herelilsear, moreover, it is decoupled
A uniform currentJ consists, in general, of normal and su- from the equation fow and is easily solved. The solution

perconducting parts consists of a transient part depending on initial conditions
(the general solution of the homogeneous equatiom the
J=oE- 2_92sz, (9) long time asymptotics of our intere@he particular solution
Mc of the full equation. The latter can be readily found by look-

whereE is the electric field directed along the channel and Ing for g of the formA sin wt+B coswt:

is the conductivity for the quasiparticles flow. We aim to jo(wTy Sinwt + coswt)

describe the system response to ac currents; thés in qt — ) =~ 1+ 0272 . (19
generalw dependent. If, however, the frequencies are bound J

by inequality o7, <1 with 7, being the scattering time for This can also be written in a more familiar form

the normal excitations, one can consider as a real

w-independent quantity. __ o . _ 1
The electric field is expressed in terms of gauge invariant G = 1+w27 siffwt +a), tana= oty (20)
potentials
In the following we are interested only in the stationary long
E=-V®- x =- x (10)  time asymptotics and omit the subscript
cit  cat Substituting the obtained in Eq. (17) we can find the

long time asymptotics fov. To this end, we look fov=v,

so that the total current is . .
+v4 COS wt+v, Sin 2wt and obtain

1/ oQ 2€°
J=——(U—Q+—f2Q>. (12) i2
c\ g M = 2(1+—022), (21
At a given current, Egs(7) and (11) form a complete @
system for two functionsi(t) and Q(t). It is convenient to > 52 )
introduce dimensionless vector potential vy = Joll ~ 0775~ 20°7y7a) (22)
2(1 + ?P)3(1 + 0?72’
2mé J A
q= Q? (12
0 B j%w[ZTJ + 71— wzrﬁ)] 23
and to_measure _the current density in units of the depairing V2= 21 +w27§)2(1 +w27i) . (23
valu€ j=J/Jg, with
S 92¢of<2) e L M2 3 This yields
oL = = , = . 2 2
CM  4a26N? Amef? .
e ¢ T u=1- Jo 22 —J—Osm(Zwt+B), (29
Also, we use the so-called “current relaxation time” 21+ o) 2
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tanB= ﬂ. (25)
U2

Thus, in the stationary state reached whenmax(7,, 7)), Y X
the order parameter has a part oscillating with frequenay 2
near the average value given in the first two terms of Eq.
(24). Clearly, the frequency doubling is due to the order pa-
rameter independence on the current direction. The zero fre- _ _ _ )
quency limit of Eq.(24) coincides with the known GL result ~ FIG. 1. The superconducting channel with a long dimension
for the order parameter suppression by a dc curtent alongx, the direction of an ac current. The crystal.abllrs dl.rec.ted
—jé. alongz. The other crystal axes are in tRg plane with a misalign-
Oscillations of the order parametper seare difficult to ment angled betweenc andx.
measure. This is not the case for the electric fieldnd the
dissipation densitytV=JE. The field E of Eq. (10) in the  direction and which are narrow on the scaleOne of the
stationary long time state is possible ways to observe the transverse phase is to measure
the voltageV generated by time-dependent phase difference
_ _ according to the Josephson formMa (%/2€)dA®/ t. This
E= cogat+ a). (26) can be achieved by driving an ac current through the said

2méc 2méc\1+ WP
o o _ channel, a simpler possibility to observe the transverse phase
The dissipation averaged over the oscillations period folthan that suggested in Ref. 3.

d’oq o jow

lows: In the static case, the supercurrent density is gived;by
202 2 =2efiM | A|?P,, whereM;; is the superconducting mass ten-
—  mIg\ 0T i R o .

W=—————. (27) sor; the summation is implied over repeated indices. It is

c(l+w Tg) convenient to introduce the normalized inverse mass tensor

—n-1 : — 1/3. H
It is worth noting that for small currents both the electric 4ik=MicM with M=(M;MM)™ then the eigenvalues are

_ . . 2 _ .
field and dissipation are not affected by the order parametgi€lated byuapyuc= ; In the “”'3’_"6" caseu?,uc—.l, Ithe In-
relaxation timer,. For wr,<1, the fieldEx e andWeo?  VETSE Masses can be expressed in terms of a single anisotropy

~4/3
they arew independent fokor;> 1. '

parametep}’z:l{alﬂc: Ma= 72/31 Mc=7Y
Sincer; diverges wherm — T, we obtain in this limit the In the coordinates of Fig. 1, the componepig are

dissipation in the normal sta¥/=J3/20, as expected. Ex- = ¥ 3y sir? 6+ cog 6),

pandingW of Eq. (27) in the small parameter lu‘sz and

keeping the first correction we obtain Mgy = v 43(+? cog 6+ sir? 6), (29
— 3% 4e'f;
W= Py 1- M20202 )" (28) pry =¥ 31 = »)sin 6 coso,

While looking at theT dependence of the dissipation near whereas su,,=uy=7"® and ,=u,y=0. To describe
T., it should be noted that the quasiparticle conductivity t-dependent situations, we again employ the TDGL model,
=n.e’r,/M decreases linearly ifT.—T) due to a decrease of the generalization of which to the anisotropic situation is
the quasiparticles density,. This causes an initial increase Straightforward: one has to replace the oper&t#t® in Eq.

H 2
of W, which can be considered as manifestation of well-(D) with &%, [Tl (S‘?e* e.g., Ref. )_8Then, we employ the
iorrame procedure as in the isotropic case to make the model

dimensionless. The scalar quantitiéeand\ now have mean-
ing of averages$é&,£,£.)Y 2 and (A\\pho) Y3, respectively.
As a result, the systerfl5) and(16) is replaced with

However, for frequencies of our interest,, <1, the “bump”
(the maximun in the dissipatiomMAW~ (\](2,/cr)w272n is situ-
ated atT=T(1-w?7), i.e., very close tol.. Out of this
narrow temperature domain the dissipation reduction on TAW2 =u - U? = w G0, (30)
cooling throughT, should behave a&l.—T)?/ »?.

73S0k + UtikOk = — Jodix COSwt. (31

The tensoisy, =0/ o is the normalized conductivity with
In isotropic superconductors in the presence of persistent=(o,0,0)3. As with the mass tensor, we can introduce
currents, the gauge invariant gradief®=V y+27wA/¢g is  for the uniaxial case the conductivity anisotropy parameter
directed along the current. Recently Kogan and Pokrovsky? =,/ o so thats,=s,= v ands,=y,*>. With these defi-
showed that in anisotropic superconductors the transverssitions, the components &, are given by formula$29) in
phase difference may appear if the driving current does nalvhich vy is replaced withy,.

IV. ANISOTROPIC CHANNEL

point in any of the principal crystal directiodsn particular, For small currents, we have for=1-u:
this situation is realized in current carrying channels cut out
of anisotropic crystals with a long side in any but a principal = 7AUI2 =0 = Wi 0Ok, (32
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73Sik0k + MikOk = ~ jodix COSwt. (33
As in the isotropic case, the equation fgris decoupled

from that forv. One can look for a particular solution of Eq.
(33) in the form g;=A, sin wt+B; coswt to obtain a linear

system of equations fo4;, B;.
Perhaps, the easiest is to deal with E2f) in the crystal

PHYSICAL REVIEW B 71, 024525(2009

pumped from the condensate to the normal excitations and
back in equal amounts. The electric fields are
M—l
- &y
E,=E—.
XX

E = ¢0wj0,u_

<= e sinot, (39

The conductivity tensos, does not enter these expressions.

frame(a,b,c) where all material tensors are diagonal. In thisOne may say that these electric fields are due td thepen-

frame, the equation to solve reads

TJSaqa + Iu“aqa == jOa COSwt, a=4a,C,
Joa=—]joSiNG, joc=]jocCOSH. (34)
The long time asymptotics is easily obtained:
joa SIN(wt +
== —Joaﬁ(w B;), tang, =~ (35)
Vo?75S2 + u2 T3S,

The electric field components in the channel fraixgy) and
the dissipation read
_ ojow| Sin? 6 cogwt + B,) . cos 0 cod wt + )
X 27750 \r/wzq'gsi + lu’azl ’

22 2
V0?73 + g

£, = $olowsin 29[ codwt+ ;)  cogwt+ By }

Tt |l VPR

s, Sirf 0 S, coS 6
g e

—  mP\2w?r
W= 0 C2 J|:

dence of the phase differencétbe Josephson relation men-
tioned abovg In particular, the very fact that the transverse
field E,# O is proof of the existence of the transverse phase.
Hence, measuring the transverse and longitudinal voltages
on a channel similar to the shown in Fig. 1, one can, in
principle, verify Eq.(39) and therefore observe the trans-
verse phase difference.

(3) wry>1, the situation taking place in particular when
T—T,.. The dissipation of Eq(36) reduces to a form similar
to that of the isotropic case:

— R 48
we gty e
with
Asir? 0+ 12 cof 9
7= ()L - (42)

si? 9+ y~cos 6

At T, W=J301/2 is the normal state dissipation. Thus, on
cooling throughT,, the resistivity drop should behave as
(T.—-T)?/ w? with an angular-dependent coefficient. It should
be noted thaty, may exceed substantially the superconduct-

Clearly, these expressions have the correct isotropic limit. Ifng anisotropyy causing a strong angular dependence;of

is instructive to consider a few limiting situations.
(1) For a dc currentlw=0), Eq. (32) gives v=uyqi0k

We have also performed the linear stability analysis of our
solutions of the TDGL equation to show that the homoge-

whereas Eq(33) yields ¢;=—jou,;. We then have neous solution is stable unless the current reaches the mag-

(37) nitude of the order ofg, . One can argue that vortices might
be generated near the boundaries at smaller currents thus

so that the order parameter suppression by a dc current dgestroying the uniform time-dependent states. Without going
pends on the current direction. We will not write down ainto a detailed discussion of this restriction, we note that our
cumbersome expression forin the general case, but the solutions for small currents are certainly stable.
physics here is the same as for the isotropic case: the order
parameter has a small part oscillating with frequenay 2

(2) wr;<<1. This situation corresponds to temperatures
not too close to the critical temperature becagse « when
T—T.. We have

— 2 -1
u=1-jomyx;
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"For convenience, we define the depairing curtggt as having equations still have stable solutions in the presence of large cur-
the order parameter suppression by small currents t@be% rents(Ref. 1.
=1—J2/Jé|_. This definition differs by a constant factor from a 8V. G. Kogan, J. R. Clem, J. M. Deang, and M. D. Gunzburger,
standard definition adg, as a maximum value for which the GL Phys. Rev. B65, 094514(2002.
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