471 research outputs found

    Current iodine status and progress over the last decade towards elimination of iodine deficiency in Rajkot District, Gujarat

    Get PDF
    Objective: To find out prevalence of goitre in primary school children; to compare prevalence with previous survey; to determine median urinary iodine concentration; to assess level of iodine in salt samples at household and retail shop level; and to study profile of salt sold at retail shops. Design & Settings: 30 cluster survey study in primary schools of Rajkot district. Subjects: Children studying in 1st to 7th standard. Methods: Total 70 students including five boys and five girls from 1st to 7th standard present in class on the day of visit were selected randomly for Goitre examination, so, total 2100 students were examined in schools. Urine sample was collected from one boy & one girl from each standard in each cluster. From community, 28 students including two boys and two girls from each standard in same age group were examined and also salt samples were tested from their households. From each village, one retail shop was visited and salts were purchased and tested for iodine on the spot with spot kit. Results: Goitre prevalence was found 8.8% among primary school children compare to 5.6% in 1999. As the age increases the Goitre prevalence also increases except in age group of 12 years. Median urinary iodine excretion level was found 110 µg/L. Iodine level >15 ppm was found in 81% salts samples tested at household level. Conclusion: Present study showed mild Goitre prevalence in primary school children in Rajkot district of Gujarat but still iodine content of salt found inadequate at household level

    Abnormal IgD and IgA1 O-glycosylation in hyperimmunoglobulinaemia D and periodic fever syndrome

    Get PDF
    In order to determine the glycosylation pattern for IgD, and to examine whether there are changes in the pattern of IgD and IgA1 O-glycosylation in patients with hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS) during acute febrile attacks and during periods of quiescence, serum was obtained from 20 patients with HIDS and 20 control subjects. In the HIDS group, serum was obtained either during an acute febrile episode (n = 9) or during a period of quiescence (n = 11). The O-glycosylation profiles of native and desialylated IgA1 and IgD were measured in an ELISA-type system using the lectins Helix aspersa and peanut agglutinin, which bind to alternative forms of O-glycan moieties. IgD is more heavily O-galactosylated and less O-sialylated than IgA1 in healthy subjects. HIDS is associated with more extensive O-galactosylation of IgD and a reduction in O-sialylation of both IgD and IgA1. These changes are present both during acute febrile attacks and periods of quiescence. The T cell IgD receptor is a lectin with binding affinity for the O-glycans of both IgD and IgA1. The observed changes in IgD and IgA1 O-glycosylation are likely to have a significant effect on IgD/IgA1–T cell IgD receptor interactions including basal immunoglobulin synthesis, and possibly myeloid IgD receptor-mediated cytokine release

    An Action-Based Approach to Presence: Foundations and Methods

    Get PDF
    This chapter presents an action-based approach to presence. It starts by briefly describing the theoretical and empirical foundations of this approach, formalized into three key notions of place/space, action and mediation. In the light of these notions, some common assumptions about presence are then questioned: assuming a neat distinction between virtual and real environments, taking for granted the contours of the mediated environment and considering presence as a purely personal state. Some possible research topics opened up by adopting action as a unit of analysis are illustrated. Finally, a case study on driving as a form of mediated presence is discussed, to provocatively illustrate the flexibility of this approach as a unified framework for presence in digital and physical environment

    Viability testing of material derived from Mycobacterium tuberculosis prior to removal from a Containment Level-III Laboratory as part of a Laboratory Risk Assessment Program

    Get PDF
    BACKGROUND: In the field of clinical mycobacteriology, Mycobacterium tuberculosis (MTB) can be a difficult organism to manipulate due to the restrictive environment of a containment level 3 (CL3) laboratory. Tests for rapid diagnostic work involving smears and molecular methods do not require CL3 practices after the organism has been rendered non-viable. While it has been assumed that after organism deactivation these techniques can be performed outside of a CL3, no conclusive study has consistently confirmed that the organisms are noninfectious after the theoretical 'deactivation' steps. Previous studies have shown that initial steps (such as heating /chemical fixation) may not consistently kill MTB organisms. METHODS: An inclusive viability study (n = 226) was undertaken to determine at which point handling of culture extraction materials does not necessitate a CL3 environment. Four different laboratory protocols tested for viability included: standard DNA extractions for IS6110 fingerprinting, crude DNA preparations for PCR by boiling and mechanical lysis, protein extractions, and smear preparations. For each protocol, laboratory staff planted a proportion of the resulting material to Bactec 12B medium that was observed for growth for 8 weeks. RESULTS: Of the 208 isolates initially tested, 21 samples grew within the 8-week period. Sixteen (7.7%) of these yielded positive results for MTB that included samples of: deactivated culture resuspensions exposed to 80°C for 20 minutes, smear preparations and protein extractions. Test procedures were consequently modified and tested again (n = 18), resulting in 0% viability. CONCLUSIONS: This study demonstrates that it cannot be assumed that conventional practices (i.e. smear preparation) or extraction techniques render the organism non-viable. All methodologies, new and existing, should be examined by individual laboratories to validate the safe removal of material derived from MTB to the outside of a CL3 laboratory. This process is vital to establish in house biosafety-validated practices with the aim of protecting laboratory workers conducting these procedures

    Ranking insertion, deletion and nonsense mutations based on their effect on genetic information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic variations contribute to normal phenotypic differences as well as diseases, and new sequencing technologies are greatly increasing the capacity to identify these variations. Given the large number of variations now being discovered, computational methods to prioritize the functional importance of genetic variations are of growing interest. Thus far, the focus of computational tools has been mainly on the prediction of the effects of amino acid changing single nucleotide polymorphisms (SNPs) and little attention has been paid to indels or nonsense SNPs that result in premature stop codons.</p> <p>Results</p> <p>We propose computational methods to rank insertion-deletion mutations in the coding as well as non-coding regions and nonsense mutations. We rank these variations by measuring the extent of their effect on biological function, based on the assumption that evolutionary conservation reflects function. Using sequence data from budding yeast and human, we show that variations which that we predict to have larger effects segregate at significantly lower allele frequencies, and occur less frequently than expected by chance, indicating stronger purifying selection. Furthermore, we find that insertions, deletions and premature stop codons associated with disease in the human have significantly larger predicted effects than those not associated with disease. Interestingly, the large-effect mutations associated with disease show a similar distribution of predicted effects to that expected for completely random mutations.</p> <p>Conclusions</p> <p>This demonstrates that the evolutionary conservation context of the sequences that harbour insertions, deletions and nonsense mutations can be used to predict and rank the effects of the mutations.</p

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Rising statin use and effect on ischemic stroke outcome

    Get PDF
    BACKGROUND: Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) have neuroprotective effects in experimental stroke models and are commonly prescribed in clinical practice. The aim of this study was to determine if patients taking statins before hospital admission for stroke had an improved clinical outcome. METHODS: This was an observational study of 436 patients admitted to the National Institutes of Health Suburban Hospital Stroke Program between July 2000 and December 2002. Self-reported risk factors for stroke were obtained on admission. Stroke severity was determined by the admission National Institutes of Health Stroke Scale score. Good outcome was defined as a Rankin score < 2 at discharge. Statistical analyses used univariate and multivariate logistic regression models. RESULTS: There were 436 patients with a final diagnosis of ischemic stroke; statin data were available for 433 of them. A total of 95/433 (22%) of patients were taking a statin when they were admitted, rising from 16% in 2000 to 26% in 2002. Fifty-one percent of patients taking statins had a good outcome compared to 38% of patients not taking statins (p = 0.03). After adjustment for confounding factors, statin pretreatment was associated with a 2.9 odds (95% CI: 1.2–6.7) of a good outcome at the time of hospital discharge. CONCLUSIONS: The proportion of patients taking statins when they are admitted with stroke is rising rapidly. Statin pretreatment was significantly associated with an improved functional outcome at discharge. This finding could support the early initiation of statin therapy after stroke

    Rapid Analysis of Saccharomyces cerevisiae Genome Rearrangements by Multiplex Ligation–Dependent Probe Amplification

    Get PDF
    Aneuploidy and gross chromosomal rearrangements (GCRs) can lead to genetic diseases and the development of cancer. We previously demonstrated that introduction of the repetitive retrotransposon Ty912 onto a nonessential chromosome arm of Saccharomyces cerevisiae led to increased genome instability predominantly due to increased rates of formation of monocentric nonreciprocal translocations. In this study, we adapted Multiplex Ligation–dependent Probe Amplification (MLPA) to analyze a large numbers of these GCRs. Using MLPA, we found that the distribution of translocations induced by the presence of Ty912 in a wild-type strain was nonrandom and that the majority of these translocations were mediated by only six translocation targets on four different chromosomes, even though there were 254 potential Ty-related translocation targets in the S. cerevisiae genome. While the majority of Ty912-mediated translocations resulted from RAD52-dependent recombination, we observed a number of nonreciprocal translocations mediated by RAD52-independent recombination between Ty1 elements. The formation of these RAD52-independent translocations did not require the Rad51 or Rad59 homologous pairing proteins or the Rad1–Rad10 endonuclease complex that processes branched DNAs during recombination. Finally, we found that defects in ASF1-RTT109–dependent acetylation of histone H3 lysine residue 56 (H3K56) resulted in increased accumulation of both GCRs and whole-chromosome duplications, and resulted in aneuploidy that tended to occur simultaneously with GCRs. Overall, we found that MLPA is a versatile technique for the rapid analysis of GCRs and can facilitate the genetic analysis of the pathways that prevent and promote GCRs and aneuploidy

    Cinnamomum cassia Bark in Two Herbal Formulas Increases Life Span in Caenorhabditis elegans via Insulin Signaling and Stress Response Pathways

    Get PDF
    Background: Proving the efficacy and corresponding mode of action of herbal supplements is a difficult challenge for evidence-based herbal therapy. A major hurdle is the complexity of herbal preparations, many of which combine multiple herbs, particularly when the combination is assumed to be vitally important to the effectiveness of the herbal therapy. This issue may be addressed through the use of contemporary methodology and validated animal models. Methods and Principal Findings: In this study, two commonly used traditional herbal formulas, Shi Quan Da Bu Tang (SQDB) and Huo Luo Xiao Ling Dan (HLXL) were evaluated using a survival assay and oxidative stress biomarkers in a well-established C. elegans model of aging. HLXL is an eleven herb formula modified from a top-selling traditional herbal formula for the treatment of arthritic joint pain. SQDB consists of ten herbs often used for fatigue and energy, particularly in the aged. We demonstrate here that SQDB significantly extend life span in a C. elegans model of aging. Among all individual herbs tested, two herbs Cinnamomum cassia bark (Chinese pharmaceutical name: Cinnamomi Cortex, CIN) and Panax ginseng root (Chinese pharmaceutical name: Ginseng Radix, GS) significantly extended life span in C. elegans. CIN in both SQDB and HLXL formula extended life span via modulation of multiple longevity assurance genes, including genes involved in insulin signaling and stress response pathways. All the life-span-extending herbs (SQDB, CIN and GS) also attenuated levels of H2O2 and enhanced small heat shock protein expression. Furthermore, the life spanextending herbs significantly delayed human amyloid beta (Aβ)-induced toxicity in transgenic C. elegans expressing human Aβ. Conclusion/Significance:These results validate an invertebrate model for rapid, systematic evaluation of commonly used Chinese herbal formulations and may provide insight for designing future evidence-based herbal therapy(s). Copyright: © 2010 Yu et al.published_or_final_versio

    Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria

    Get PDF
    Red blood cells (RBCs) infected by a Plasmodium parasite in malaria may lose their membrane deformability with a relative membrane stiffening more than ten-fold in comparison with healthy RBCs leading to potential capillary occlusions. Moreover, infected RBCs are able to adhere to other healthy and parasitized cells and to the vascular endothelium resulting in a substantial disruption of normal blood circulation. In the present work, we simulate infected RBCs in malaria using a multiscale RBC model based on the dissipative particle dynamics method, coupling scales at the sub-cellular level with scales at the vessel size. Our objective is to conduct a full validation of the RBC model with a diverse set of experimental data, including temperature dependence, and to identify the limitations of this purely mechanistic model. The simulated elastic deformations of parasitized RBCs match those obtained in optical-tweezers experiments for different stages of intra-erythrocytic parasite development. The rheological properties of RBCs in malaria are compared with those obtained by optical magnetic twisting cytometry and by monitoring membrane fluctuations at room, physiological, and febrile temperatures. We also study the dynamics of infected RBCs in Poiseuille flow in comparison with healthy cells and present validated bulk viscosity predictions of malaria-infected blood for a wide range of parasitemia levels (percentage of infected RBCs with respect to the total number of cells in a unit volume).United States. National Institutes of Health (Grant R01HL094270)National Science Foundation (U.S.). (Grant CBET-0852948)Singapore-MIT Alliance for Research and Technology Cente
    corecore