73 research outputs found

    Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations

    Full text link
    We calculate exactly matrix elements between states that are not eigenstates of the quantum XY model for general anisotropy. Such quantities therefore describe non equilibrium properties of the system; the Hamiltonian does not contain any time dependence. These matrix elements are expressed as a sum of Pfaffians. For single particle excitations on the ground state the Pfaffians in the sum simplify to determinants.Comment: 11 pages, no figures; revtex. Minor changes in the text; list of refs. modifie

    Electrostatic analogy for integrable pairing force Hamiltonians

    Full text link
    For the exactly solved reduced BCS model an electrostatic analogy exists; in particular it served to obtain the exact thermodynamic limit of the model from the Richardson Bethe ansatz equations. We present an electrostatic analogy for a wider class of integrable Hamiltonians with pairing force interactions. We apply it to obtain the exact thermodynamic limit of this class of models. To verify the analytical results, we compare them with numerical solutions of the Bethe ansatz equations for finite systems at half-filling for the ground state.Comment: 14 pages, 6 figures, revtex4. Minor change

    Bethe Ansatz solution of a new class of Hubbard-type models

    Get PDF
    We define one-dimensional particles with generalized exchange statistics. The exact solution of a Hubbard-type Hamiltonian constructed with such particles is achieved using the Coordinate Bethe Ansatz. The chosen deformation of the statistics is equivalent to the presence of a magnetic field produced by the particles themselves, which is present also in a ``free gas'' of these particles.Comment: 4 pages, revtex. Essentially modified versio

    Mesoscopic BCS pairing in the repulsive 1d-Hubbard model

    Full text link
    We study mesoscopic pairing in the one dimensional repulsive Hubbard model and its interplay with the BCS model in the canonical ensemble. The key tool is comparing the Bethe ansatz equations of the two models in the limit of small Coulomb repulsion. For the ordinary Hubbard interaction the BCS Bethe equations with infinite pairing coupling are recovered; a finite pairing is obtained by considering a further density-dependent phase-correlation in the hopping amplitude of the Hubbard model. We find that spin degrees of freedom in the Hubbard ground state are arranged in a state of the BCS type, where the Cooper-pairs form an un-condensed liquid on a ``lattice'' of single particle energies provided by the Hubbard charge degrees of freedom; the condensation in the BCS ground state corresponds to Hubbard excitations constituted by a sea of spin singlets.Comment: 15 pages, 6 figures. To be published on Physical Review

    Integrable spin-boson models descending from rational six-vertex models

    Full text link
    We construct commuting transfer matrices for models describing the interaction between a single quantum spin and a single bosonic mode using the quantum inverse scattering framework. The transfer matrices are obtained from certain inhomogeneous rational vertex models combining bosonic and spin representations of SU(2), subject to non-diagonal toroidal and open boundary conditions. Only open boundary conditions are found to lead to integrable Hamiltonians combining both rotating and counter-rotating terms in the interaction. If the boundary matrices can be brought to triangular form simultaneously, the spectrum of the model can be obtained by means of the algebraic Bethe ansatz after a suitable gauge transformation; the corresponding Hamiltonians are found to be non-hermitian. Alternatively, a certain quasi-classical limit of the transfer matrix is considered where hermitian Hamiltonians are obtained as members of a family of commuting operators; their diagonalization, however, remains an unsolved problem.Comment: 16 pages, 2 eps figure

    Three-tangle for mixtures of generalized GHZ and generalized W states

    Get PDF
    We give a complete solution for the three-tangle of mixed three-qubit states composed of a generalized GHZ state, a|000>+b|111>, and a generalized W state, c|001>+d|010>+f|100>. Using the methods introduced by Lohmayer et al. we provide explicit expressions for the mixed-state three-tangle and the corresponding optimal decompositions for this more general case. Moreover, as a special case we obtain a general solution for a family of states consisting of a generalized GHZ state and an orthogonal product state

    Exact relationship between the entanglement entropies of XY and quantum Ising chains

    Full text link
    We consider two prototypical quantum models, the spin-1/2 XY chain and the quantum Ising chain and study their entanglement entropy, S(l,L), of blocks of l spins in homogeneous or inhomogeneous systems of length L. By using two different approaches, free-fermion techniques and perturbational expansion, an exact relationship between the entropies is revealed. Using this relation we translate known results between the two models and obtain, among others, the additive constant of the entropy of the critical homogeneous quantum Ising chain and the effective central charge of the random XY chain.Comment: 6 page

    Entanglement evolution after connecting finite to infinite quantum chains

    Full text link
    We study zero-temperature XX chains and transverse Ising chains and join an initially separate finite piece on one or on both sides to an infinite remainder. In both critical and non-critical systems we find a typical increase of the entanglement entropy after the quench, followed by a slow decay towards the value of the homogeneous chain. In the critical case, the predictions of conformal field theory are verified for the first phase of the evolution, while at late times a step structure can be observed.Comment: 15 pages, 11 figure

    Entanglement study of the 1D Ising model with Added Dzyaloshinsky-Moriya interaction

    Full text link
    We have studied occurrence of quantum phase transition in the one-dimensional spin-1/2 Ising model with added Dzyaloshinsky-Moriya (DM) interaction from bi- partite and multi-partite entanglement point of view. Using exact numerical solutions, we are able to study such systems up to 24 qubits. The minimum of the entanglement ratio R ≡\equiv \tau 2/\tau 1 < 1, as a novel estimator of QPT, has been used to detect QPT and our calculations have shown that its minimum took place at the critical point. We have also shown both the global-entanglement (GE) and multipartite entanglement (ME) are maximal at the critical point for the Ising chain with added DM interaction. Using matrix product state approach, we have calculated the tangle and concurrence of the model and it is able to capture and confirm our numerical experiment result. Lack of inversion symmetry in the presence of DM interaction stimulated us to study entanglement of three qubits in symmetric and antisymmetric way which brings some surprising results.Comment: 18 pages, 9 figures, submitte
    • …
    corecore