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Abstract. We define one-dimensional particles with generalized exchange statistics. The exact
solution of a Hubbard-type Hamiltonian constructed with such particles is achieved using the
coordinate Bethe Ansatz. The chosen deformation of the statistics is equivalent to the presence of
a magnetic field produced by the particles themselves, which is also present in a ‘free gas’ of these
particles.

Studies on strongly correlated one-dimensional (1D) systems have deeply influenced modern
concepts in many-particle physics. These systems may be of strictly linear extension like
quantum wires, quantum Hall bars, (quasi-)1D organic metals and spin chains, or higher-
dimensional systems where rotational degrees of freedom are not relevant, as in the Kondo
problem [1]. Exactly solvable models [2] play a crucial role in the theoretical description of
1D systems since there most of the results obtained by approximate methods are not reliable
(especially at low temperature). They also serve as a reliability test for various approximations,
which are applied to models in higher dimensions.

An important example is the Bethe Ansatz (BA) solvable 1D-Hubbard model (HM) [3].
The HM, originally proposed in [4], describes electrons hopping on a -dimensional lattice,
while experiencing an on-site interaction. The two-dimensional HM is believed to capture
important features of high- superconductivity [5]. Away from half-filling, the 1D HM
exhibits Luttinger liquid (LL) behaviour (for a review, see [6]).

Various generalizations of the HM have been proposed; most of them emerge from
changing explicitly the form of the Hamiltonian (for a review, see [7]). The coupling of
the fermionic degrees of freedom to a phononic bath has been studied in [8]. Recently, Schulz
and Shastry [9] proposed a class of solvable Hubbard-type models in which the hopping
amplitude of the particles with a given spin orientation is modulated by a gauge field (entering
the Hamiltonian via a Peierls-like substitution), which depends on the density of particles
with opposite spin orientation. A similar gauge-like potential has been employed to couple
several Hubbard chains [10], where ‘ -coloured’ electrons in chains perform intra-chain
hopping, which is (gauge-like) affected by the density of electrons in the other chains [10].
The effective inter-chain interaction resembles an electromagnetic field due to the motion of
electrons moving along each chain. The models studied in [9] show LL behaviour even in the
absence of the interaction: the asymptotic behaviour of correlation functions depends on the
coupling strength between the gauge field and the particles, which is responsible for the change
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in periodicity of the wavefunction. The gauge potential breaks the time reversal symmetry
of the Hamiltonian. Charge and spin excitations have anyon-like character, and the scaling
properties deviate from the ‘fermionic’ LL theory [9].

Another way of extending a model is to modify the ‘nature’ of the particles entering the
Hamiltonian, without changing its formal structure†. In this paper we choose this approach
to extend the HM: we keep the formal structure of the Hubbard Hamiltonian unaltered, but
we change the particles from fermions to particles whose wavefunctions obey a generalized
exchange symmetry. We call the statistics of such particles deformed exchange statistics
(DES) [12]. Here, a variant of the DES introduced in [13] is used. The corresponding particles
constitute a non-Abelian realization of the symmetric group (see [12]). The ‘deformed’
1D HM is solved exactly by means of the coordinate BA (CBA) and the Bethe equations (BE)
are compared with the results in [9–14].

We define the HM Hamiltonian for particles obeying DES as
†

+1 + h c + (1)

where , † ( , respectively 1
2

1
2 ) obey the deformed relations

† + †

+ 0
(2)

1 † (3)

[ † ] [ ] 0 (4)

Relations (2) are formally analogue to quon commutation rules [15], but here the deformation
parameter depends on indices . The operators † are the particle-
number operators. Equation (3) guarantees that the particles are representations of ,
whereas (4) ensures the standard commutation relations [ ] 0, [ † ]

† , and [ ] , providing a well defined Fock representation

of the algebra defined in (2). We point out that DES is defined for any fulfilling (3), (4);
we choose the deformation parameter depending on spins and coordinates, but also such that
the solvability of the model (1) is ensured:

:
ei + ei

ei

e i + ei .

(5)

For fixed , is a -number.

The deformation defined above becomes integrable if 0 0 mod 2 holds.
This implies 0 0 0 mod 2 . Note that inserting definition (5)
in (2) implies the Pauli principle since 1, and that two particles with different spin

on the same site obey deformed anticommutation relations since 1. Equation (4)
is trivially fulfilled as well as the consistency relation (3) together with (5). The fermionic
case is obtained setting 0 0, whereas the hard-core bosonic case is covered
via 0 1 . Furthermore, for spin- 1

2 particles and factorizing spin- and
coordinate dependence of the deformation, every spin dependence in the deformation can be
written in the linear form used here.

† Such an approach has been also employed by Maassarani, where he proposed a HM in which the electronic degrees
of freedom were generalized to being generators of [11].
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It is worth mentioning that (5) implies fixing an order on the ring. Such an order
distinguishes one (given) lattice site from the others in that it defines the ‘beginning’ of the
ring, where one starts counting. Periodicity means not only that the wavefunction has to be
periodic, but simultaneously demands the result being independent of where the starting point
was set. What is equivalent, is fixing a period 0 1 1 + on the infinite periodic
chain. Consistency of the periodic boundary condition (see below) with this induced order is
given if the results are independent of 0. In what follows it will be seen that this condition is
fulfilled.

Now we show that the Hamiltonian (1) is exactly solvable by means of CBA. We apply
periodic boundary conditions (PBC), which means + . The general -particle
state in a chain with sites can be written as

1

1I
†

1I 0 (6)

where we have used the abbreviations 1 , †

†
1 1

† , for arbitrary ; 1I is the identity in . For indistinguishable
particles in 2, a Fock base state is uniquely determined by the coordinates and the
spin-configuration; it must not depend on the order in which the particles are created. This
requires

† † (7)

for any , , since changing the order in creating particles means permuting both the
coordinate and spin indices of the operators † in †. Equation (7) fixes the symmetry

of the wavefunction . In the case of fermionic statistics, sign 1I ,
where sign + for even/odd permutations. Every permutation can be decomposed into
a product of neighbour exchanges +1 . Taking 2 1 as a relevant
example to fix the idea and further defining the partial products as 2 1 for

, we obtain

1

[ ] 1I (8)

where , , +1 , and +1 .
Due to the DES (2), special care must be taken when employing the symmetry of

to restrict the coordinate space to a sector of ordered coordinates (called ‘order region’ in
the following). An order region can be characterized by a permutation which
connects the actual set of coordinates 1 with the ordered one so that 1

1 , where 1 . The corresponding wavefunction, which is defined
in this order region, is labelled by : 1I . At first, it is necessary
keeping this label for writing the Schrödinger equation, since the hopping term can connect
different order regions. Due to the Pauli principle, only two order regions are needed to solve
the Schrödinger equation (let these two order regions be connected by ). For ,
equation (8) simplifies to

(9)

where , and +1 , +1 . In the special case of a doubly
occupied site, +1, the symmetry relation on the border of an order region leads to

1I 1I (10)



L90                  

Equations (9) and (10) allow writing the Schrödinger equation in terms of a single †. Since
each can be obtained from 1I using (8), we consider 1I in the following. The label 1I
will be omitted, and the coordinate vector is chosen being ordered. We insert the Bethe
wavefunction

exp i
1

into . For pairwise distinct coordinates we obtain the energy in terms of the
momenta : 2 1 cos . Its form is unaltered by the deformation (5). Using (9)
and (10), the Schrödinger equation corresponding to doubly occupied sites explicitly contains
the deformation parameter, and the scattering matrix reads

i ei
+1 2

i 2

(11)

where we have defined sin , sin +1 , , and +1 . The
permutation operator +1 is defined by its action on the amplitudes : +1

. The scattering matrix fulfils the Yang–Baxter equation (YBE)

+ 1 + 1 + 1 (12)

where sin +2 . For the validity of the YBE, it is important to notice that and
do not commute, since and contain the spin permutation, which is affected by :

+1 +1. Applying PBC, which also demands independence from
the pre-chosen order, we obtain

1 +1 1 + + (13)

where is the cyclic permutation 1 1
+1 1 , and the function reads

1 1

1

1

1

+

+

1 1
0

1

(14)

where ei[ 1 2 2 ] is the spin-dependent part, and 0 1 the spin-
independent part of ‡. Thus, the deformation affects the BE in two distinct ways: (a) via
the prefactor by imposing PBC: its form arises from the deformed symmetry of the
wavefunction induced by the algebra (2); (b) due to a modified -matrix in case of on-site
deformation. The BE are

ei

0 1

i sin 4

i sin + 4

1

i + 2

i 2 1

i sin 4

i sin + 4

(15)

† Equations (9) and (10) guarantee that two wavefunctions defined in neighbouring regions are single valued on the
intersection of their domains.
‡ The choice of the functional form of , which was integrable in [13], would destroy the CBA solvability of the HM,
since would become configuration dependent.
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where the factor e i arises from the matrix in diagonalizing the transfer matrix of the
‘spin problem’, equation (13). Using the expression for 0, , and the integrability
condition 0 0 mod 2 , the factors due to the DES are

0
e i 1 1 (16)

ei[ 1 1 1 1 ] (17)

We see how the above contributions involve only the spatial part of the deformation (5); a
purely spin-dependent deformation of the statistics does not affect the spectrum of the model.
Even in this case, however, the eigenstates are different due to the modification in the
matrix. This can also be made transparent by representing the † by fermionic operators

†: 1 e i . In a forthcoming paper [16] we will describe in more detail
the connection between fermionization and DES, as well as the connections to [9, 14]. Here
we mention only that, defining 1 2 , the phases appearing in the BEs
decompose into and , found in [14]. In contrast to the result in [9], the factors

1 appear. The reason for this is that the phases in [9] were produced by particles
having opposite spin, whereas here the relevant phase comes from particles having equal spin
projections. Thus the particle feeling that phase is excluded.

From the BEs (15), the total momentum can be extracted:

1

1
2

(18)

From this it is seen that the total momentum, though periodicity is implied, is not necessarily a
multiple of 2 , which is the case for the undeformed model. This is not surprising, since the
spectrum is that of a twisted fermionic model. The total momentum can be obtained in shifting

momenta of the undeformed model, which become 2 for 0, by 1 1
and the remaining momenta by 1 1 . That means

2
1

cos
2

+ (19)

with as defined above in comparison with [14] and , for fixed , being distinct integers
modulo . Expression (19) shows the physical meaning of DES: the deformation of the
particles’ statistics is equivalent to a magnetic field generated from the particles themselves.
Such a magnetic field depends on how many particles are in the system. In particular, (19)
shows how the energy of a gas of free ( 0) particles is not simply the sum of the single
particles’ energies, but it describes a system of interacting particles. Such interaction purely
comes from the deformed statistics. However, the noninteracting limit is to be taken carefully
here. This can be understood by facing the second BE. In order to keep the phase, two or more
spin rapidities are forced to either coincide with each other or with one or several sin .
Such contributions have to be linear in 4 .

In conclusion, we have extended the BA for particles with deformed exchange statistics
or, which is equivalent, for solutions with generalized exchange symmetry. A method already
introduced in [13] is here generalized for problems including inner degrees of freedom like spin.
Using this technique, a new class of generalized Hubbard models could be shown being exactly
solvable. The spectrum equals that of a fermionic model with spin dependent boundary phases,
which in fact turns out being a general feature of integrable deformed exchange statistics.
The eigenfunctions, however, are different due to the non-fermionic exchange symmetry. A
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preliminary study showed that these phases in general already contribute to the thermodynamic
limit. We will discuss the details elsewhere [16].

A systematic study of deformed models is most interesting for at least two reasons. First,
‘integrable deformed statistics’ can be an alternative way of handling complicated interactions
of integer statistics’ particles. In a forthcoming paper [16] we will review these results from
another viewpoint: namely, fermionic models with correlated hopping. There, a general
statement on integrability of deformed exchange statistics will be drawn as well as for models
with correlated hopping.

Second, it might be relevant for modelling the edge states in fractional quantum Hall effect
physics, the chiral LL behaviour of which has recently been questioned [17].
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