9 research outputs found

    Machine Learning with Structured Sparsity : application to Neuroimaging-based Phenotyping in Autism Spectrum Disorder and Schizophrenia

    No full text
    La schizophrénie est un trouble mental, chronique et invalidant caractérisé par divers symptômes tels que des hallucinations, des épisodes délirants ainsi que des déficiences dans les fonctions cognitives. Au fil des ans, l'Imagerie par Résonance Magnétique (IRM) a été de plus en plus utilisée pour mieux comprendre les anomalies structurelles et fonctionnelles inhérentes à ce trouble. Les progrès récents en apprentissage automatique et l'apparition de larges bases de données ouvrent maintenant la voie vers la découverte de biomarqueurs pour le diagnostic/ pronostic assisté par ordinateur. Compte tenu des limitations des algorithmes actuels à produire des signatures prédictives stables et interprétables, nous avons prolongé les approches classiques de régularisation avec des contraintes structurelles provenant de la structure spatiale du cerveau afin de: forcer la solution à adhérer aux hypothèses biologiques, produisant des solutions interprétables et plausibles. De telles contraintes structurelles ont été utilisées pour d'abord identifier une signature neuroanatomique de la schizophrénie et ensuite une signature fonctionnelle des hallucinations chez les patients atteints de schizophrénie.Schizophrenia is a disabling chronic mental disorder characterized by various symptoms such as hallucinations, delusions as well as impairments in high-order cognitive functions. Over the years, Magnetic Resonance Imaging (MRI) has been increasingly used to gain insights on the structural and functional abnormalities inherent to the disorder. Recent progress in machine learning together with the availability of large datasets now pave the way to capture complex relationships to make inferences at an individual level in the perspective of computer-aided diagnosis/prognosis or biomarkers discovery. Given the limitations of state-of-the-art sparse algorithms to produce stable and interpretable predictive signatures, we have pushed forward the regularization approaches extending classical algorithms with structural constraints issued from the known biological structure (spatial structure of the brain) in order to force the solution to adhere to biological priors, producing more plausible interpretable solutions. Such structured sparsity constraints have been leveraged to identify first, a neuroanatomical signature of schizophrenia and second a neuroimaging functional signature of hallucinations in patients with schizophrenia. Additionally, we also extended the popular PCA (Principal Component Analysis) with spatial regularization to identify interpretable patterns of the neuroimaging variability in either functional or anatomical meshes of the cortical surface

    Apprentissage automatique avec parcimonie structurée : application au phénotypage basé sur la neuroimagerie pour la schizophrénie

    No full text
    Schizophrenia is a disabling chronic mental disorder characterized by various symptoms such as hallucinations, delusions as well as impairments in high-order cognitive functions. Over the years, Magnetic Resonance Imaging (MRI) has been increasingly used to gain insights on the structural and functional abnormalities inherent to the disorder. Recent progress in machine learning together with the availability of large datasets now pave the way to capture complex relationships to make inferences at an individual level in the perspective of computer-aided diagnosis/prognosis or biomarkers discovery. Given the limitations of state-of-the-art sparse algorithms to produce stable and interpretable predictive signatures, we have pushed forward the regularization approaches extending classical algorithms with structural constraints issued from the known biological structure (spatial structure of the brain) in order to force the solution to adhere to biological priors, producing more plausible interpretable solutions. Such structured sparsity constraints have been leveraged to identify first, a neuroanatomical signature of schizophrenia and second a neuroimaging functional signature of hallucinations in patients with schizophrenia. Additionally, we also extended the popular PCA (Principal Component Analysis) with spatial regularization to identify interpretable patterns of the neuroimaging variability in either functional or anatomical meshes of the cortical surface.La schizophrénie est un trouble mental, chronique et invalidant caractérisé par divers symptômes tels que des hallucinations, des épisodes délirants ainsi que des déficiences dans les fonctions cognitives. Au fil des ans, l'Imagerie par Résonance Magnétique (IRM) a été de plus en plus utilisée pour mieux comprendre les anomalies structurelles et fonctionnelles inhérentes à ce trouble. Les progrès récents en apprentissage automatique et l'apparition de larges bases de données ouvrent maintenant la voie vers la découverte de biomarqueurs pour le diagnostic/ pronostic assisté par ordinateur. Compte tenu des limitations des algorithmes actuels à produire des signatures prédictives stables et interprétables, nous avons prolongé les approches classiques de régularisation avec des contraintes structurelles provenant de la structure spatiale du cerveau afin de: forcer la solution à adhérer aux hypothèses biologiques, produisant des solutions interprétables et plausibles. De telles contraintes structurelles ont été utilisées pour d'abord identifier une signature neuroanatomique de la schizophrénie et ensuite une signature fonctionnelle des hallucinations chez les patients atteints de schizophrénie

    Interpretable and stable prediction of schizophrenia on a large multisite dataset using machine learning with structured sparsity

    No full text
    International audienceThe use of machine-learning (ML) in neuroimaging offers new perspectives in early diagnosis and prognosis of brain diseases. Indeed, ML algorithms can jointly examine all brain features to capture complex relationships in the data in order to make inferences at a single-subject level. To deal with such high dimensional input and the associated risk of overfitting on the training data, a proper regularization (or feature selection) is required. Standard l2l_2-regularized predictors, such as Support Vector Machine, provide dense patterns of predictors. However, in the context of predictive disease signature discovery, it is now essential to understand the brain pattern that underpins the prediction. Despite l1l_1-regularized (sparse) has often been advocated as leading to more interpretable models, they generally lead to scattered and unstable patterns. We hypothesize that the integration of prior knowledge regarding the structure of the input images should improve the relevance and the stability of the predictive signature. Such structured sparsity can be obtained by combining together l1l_1 (possibly l2l_2) and Total variation (TV) penalties. We demonstrated the relevance of using ML with structured sparsity on a large multisite dataset of schizophrenia patients and controls. Using 3D maps of grey matter density , we obtained promising inter-site prediction performances. More importantly, we have uncovered a predictive signature of schizophrenia that is clinically interpretable and stable across resampling. This suggests that structured sparsity provides a major breakthrough over 'off-the-shelf' algorithms to perform a robust selection of important brain regions in the context of biomarkers discovery

    Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty

    No full text
    International audiencePrincipal component analysis (PCA) is an exploratory tool widely used in data analysis to uncover dominant patterns of variability within a population. Despite its ability to represent a data set in a low-dimensional space, PCA's inter-pretability remains limited. Indeed, the components produced by PCA are often noisy or exhibit no visually meaningful patterns. Furthermore, the fact that the components are usually non-sparse may also impede interpretation, unless arbitrary thresholding is applied. However, in neuroimaging, it is essential to uncover clinically interpretable phenotypic markers that would account for the main variability in the brain images of a population. Recently, some alternatives to the standard PCA approach, such as Sparse PCA, have been proposed, their aim being to limit the density of the components. Nonetheless, sparsity alone does not entirely solve the interpretability problem in neuroimaging, since it may yield scattered and unstable components. We hypothesized that the incorporation of prior information regarding the structure of the data may lead to improved relevance and interpretability of brain patterns. We therefore present a simple extension of the popular PCA framework that adds structured sparsity penalties on the loading vectors in order to identify the few stable regions in the brain images that capture most of the variability. Such structured sparsity can be obtained by combining e.g., ll1 and total variation (TV) penalties, where the TV regularization encodes information on the underlying structure of the data. This paper presents the structured sparse PCA (denoted SPCA-TV) optimization framework and its resolution. We demonstrate SPCA-TV's effectiveness and versatility on three different data sets. It can be applied to any kind of structured data, such as e.g., N-dimensional array images or meshes of cortical surfaces. The gains of SPCA-TV over unstructured approaches (such as Sparse PCA and ElasticNet PCA) or structured approach (such as GraphNet PCA) are significant, since SPCA-TV reveals the variability within a data set in the form of intelligible brain patterns that are easier to interpret and more stable across different samples

    Decoding activity in Broca's area predicts the occurrence of auditory hallucinations across subjects

    No full text
    International audienceBACKGROUND: Functional magnetic resonance imaging (fMRI) capture aims at detecting auditory-verbal hallucinations (AVHs) from continuously recorded brain activity. Establishing efficient capture methods with low computational cost that easily generalize between patients remains a key objective in precision psychiatry. To address this issue, we developed a novel automatized fMRI-capture procedure for AVHs in patients with schizophrenia (SCZ). METHODS: We used a previously validated but labor-intensive personalized fMRI-capture method to train a linear classifier using machine learning techniques. We benchmarked the performances of this classifier on 2320 AVH periods versus resting-state periods obtained from SCZ patients with frequent symptoms (n = 23). We characterized patterns of blood oxygen level-dependent activity that were predictive of AVH both within and between subjects. Generalizability was assessed with a second independent sample gathering 2000 AVH labels (n = 34 patients with SCZ), while specificity was tested with a nonclinical control sample performing an auditory imagery task (840 labels, n = 20). RESULTS: Our between-subject classifier achieved high decoding accuracy (area under the curve = 0.85) and discriminated AVH from rest and verbal imagery. Optimizing the parameters on the first schizophrenia dataset and testing its performance on the second dataset led to an out-of-sample area under the curve of 0.85 (0.88 for the converse test). We showed that AVH detection critically depends on local blood oxygen level-dependent activity patterns within Broca's area. CONCLUSIONS: Our results demonstrate that it is possible to reliably detect AVH states from fMRI blood oxygen level-dependent signals in patients with SCZ using a multivariate decoder without performing complex preprocessing steps. These findings constitute a crucial step toward brain-based treatments for severe drug-resistant hallucinations

    Prevalence of comorbidities and concomitant medication use in acromegaly: analysis of real-world data from the United States

    Get PDF
    Purpose: Patients receiving treatment for acromegaly often experience significant associated comorbidities for which they are prescribed additional medications. We aimed to determine the real-world prevalence of comorbidities and concomitant medications in patients with acromegaly, and to investigate the association between frequency of comorbidities and number of concomitantly prescribed medications. Methods: Administrative claims data were obtained from the IBM® MarketScan® database for a cohort of patients with acromegaly, identified by relevant diagnosis codes and acromegaly treatments, and a matched control cohort of patients without acromegaly from January 2010 through April 2020. Comorbidities were identified based on relevant claims and assessed for both cohorts. Results: Overall, 1175 patients with acromegaly and 5875 matched patients without acromegaly were included. Patients with acromegaly had significantly more comorbidities and were prescribed concomitant medications more so than patients without acromegaly. In the acromegaly and control cohorts, respectively, 67.6% and 48.4% of patients had cardiovascular disorders, the most prevalent comorbidities, and 89.0% and 68.3% were prescribed > 3 concomitant medications (p < 0.0001). Hypopituitarism and hypothalamic disorders, sleep apnea, malignant neoplasms and cancer, and arthritis and musculoskeletal disorders were also highly prevalent in the acromegaly cohort. A moderate, positive correlation (Spearman correlation coefficient 0.60) was found between number of comorbidities and number of concomitant medications in the acromegaly cohort. Conclusion: Compared with patients without acromegaly, patients with acromegaly have significantly more comorbidities and are prescribed significantly more concomitant medications. Physicians should consider the number and type of ongoing medications for individual patients before prescribing additional acromegaly treatments

    Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity

    No full text
    International audienceDespite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time-consuming. This article first proposes a machine-learning algorithm to automatically identify resting-state fMRI periods that precede hallucinations versus periods that do not. When applied to whole-brain fMRI data, state-of-the-art classification methods , such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech-related brain regions. The variation in transition-to-hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the data-set. Such results are promising in the scope of innovative fMRI-guided therapy for drug-resistant hallucinations, such as fMRI-based neurofeedback

    Insights from an autism imaging biomarker challenge: promises and threats to biomarker discovery

    Get PDF
    International audienceMRI has been extensively used to identify anatomical and functional differences in Autism Spectrum Disorder (ASD). Yet, many of these findings have proven difficult to replicate because studies rely on small cohorts and are built on many complex, undisclosed, analytic choices. We conducted an international challenge to predict ASD diagnosis from MRI data, where we provided preprocessed anatomical and functional MRI data from > 2,000 individuals. Evaluation of the predictions was rigorously blinded. 146 challengers submitted prediction algorithms, which were evaluated at the end of the challenge using unseen data and an additional acquisition site. On the best algorithms, we studied the importance of MRI modalities, brain regions, and sample size. We found evidence that MRI could predict ASD diagnosis: the 10 best algorithms reliably predicted diagnosis with AUC~0.80-far superior to what can be currently obtained using genotyping data in cohorts 20-times larger. We observed that functional MRI was more important for prediction than anatomical MRI, and that increasing sample size steadily increased prediction accuracy, providing an efficient strategy to improve biomarkers. We also observed that despite a strong incentive to generalise to unseen data, model development on a given dataset faces the risk of overfitting: performing well in cross-validation on the data at hand, but not generalising. Finally, we were able to predict ASD diagnosis on an external sample added after the end of the challenge (EU-AIMS), although with a lower prediction accuracy (AUC=0.72). This indicates that despite being based on a large multisite cohort, our challenge still produced biomarkers fragile in the face of dataset shifts
    corecore