15 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    BEHAVIOR OF RECYCLED AGGREGATE CONCRETE BEAMS STRENGTHENED WITH FRP

    No full text
    In this paper, the experimental work of this research included the test of seven concrete beams with dimensions (0.24 * 0.15 * 1.7) m. The mixing ratio is (1:2:3) and the water ratio(w/c) is 0.5. The first control beam has new aggregates and without strengthen with carbon fiber polymer sheet. The next three beams have the different ratio of recycled aggregate of (25%, 50%, 75%), and the last three beams have the different ratio of recycled aggregate of (25%, 50%, 75%) and with strengthen with carbon fiber polymer sheet. The experimental results showed that the ultimate load in the control beam (NC) became approximately (4,9,14) % respectively higher than the group of the recycle aggregate (B2. B3. B4) beams. When strengthening the beams by carbon fiber polymer sheet. The author notice the ultimate load in the control beam (NC) became approximately (20,16,0) % respectively lesser than the group of recycle aggregate (B5.B6.B7) strengthening beams

    Ceramic Ti/TiO<sub>2</sub>/AuNP Film with 1-D Nanostructures for Selfstanding Supercapacitor Electrodes

    No full text
    Herein we have fabricated AuTiO2 from a one-dimensional (1D) nanocomposite by the simple oxidation method of the Ti sheet for supercapacitor applications. We intended on fabricating a microlayer extended into the sheet body to form a selfstanding electrode. Raman spectra and XRD patterns confirmed the formation of the rutile phase of the TiO2 bulk, and FESEM confirmed the growth of the 1D nanostructure made of Au/TiO2, where the Au nanoparticles reside on the tip of the TiO2 nanorods. The growth of 1D TiO2 by this method is supported by a growth mechanism during the oxidation process. Three electrodes were fabricated based on pure and doped TiO2. These electrodes were used as a selfstanding supercapacitor electrode. The Au-doped TiO2 exhibited a great improvement in the electrochemical performance at low Au concentrations, whereas the excessive Au concentration on the TiO2 surface exhibited a negative effect on the capacitance value. The highest areal capacitance of 72 mFcm−2 at a current density of 5 µAcm−2 was recorded for TiO2 doped with a low Au concentration. The mechanism of the electrochemical reaction was proposed based on Nyquist and Bode plots. The obtained results point out that the effect of Au on the TiO2 surface makes Au/TiO2 ceramic electrodes a promising material as selfstanding energy storage electrodes
    corecore