250 research outputs found

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    Front-end electronics for the ALICE TPC-detector

    Get PDF
    The Front-End electronics for the Time Projection Chamber (TPC) for the ALICE experiment consists of 5x105 channels. A single readout channel is comprised of three basic units: a charge sensitive amplifier/shaper with a fast tail cancellation; a 10 bit 10 Msamples/sec low power ADC; a digital ASIC which contains the zero suppression circuit and a multiple-event buffer. Data from a number of channels (4096) are multiplexed into an optical link (DDL) by means of a local custom bus which can support a data throughput of 2 Mbyte/event at a trigger rate of 50 Hz. The construction of a prototype of this electronics is presented in this paper

    Calculation of the relative metastabilities of proteins using the CHNOSZ software package

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables.</p> <p>Results</p> <p>A software package called CHNOSZ implementing the revised Helgeson-Kirkham-Flowers (HKF) equations of state and group additivity for ionized unfolded aqueous proteins was developed. The program can be used to calculate standard molal Gibbs energies and other thermodynamic properties of reactions and to make chemical speciation and predominance diagrams that represent the metastable equilibrium distributions of proteins. The approach takes account of the chemical affinities of reactions in open systems characterized by the chemical potentials of basis species. The thermodynamic database included with the package permits application of the software to mineral and other inorganic systems as well as systems of proteins or other biomolecules.</p> <p>Conclusion</p> <p>Metastable equilibrium activity diagrams were generated for model cell-surface proteins from archaea and bacteria adapted to growth in environments that differ in temperature and chemical conditions. The predicted metastable equilibrium distributions of the proteins can be compared with the optimal growth temperatures of the organisms and with geochemical variables. The results suggest that a thermodynamic assessment of protein metastability may be useful for integrating bio- and geochemical observations.</p

    Absence of the common Insulin-like growth factor-1 19-repeat allele is associated with early age at breast cancer diagnosis in multiparous women

    Get PDF
    Multiparity decreases the risk of breast cancer in white women, whereas it is a risk factor in black women <50 years. Early-onset breast cancer (<50 years) has been associated with high insulin-like growth factor-1 (IGF-1) levels. Absence of the common IGF1 19 cytosine-adenine (CA)-repeat allele (IGF1-19/-19) inverts the effect of several non-genetic factors on breast cancer risk but the interaction between IGF1-19/-19 and multiparity on breast cancer risk is unknown. As IGF1-19/-19, multiparity and early-onset breast cancer are more common in black than in white women, we aimed to study whether multiparity combined with IGF1-19/-19 increases the risk of early-onset breast cancer. Four hundred and three breast cancer patients diagnosed in Lund, Sweden, at age 25–99 years were genotyped for the IGF1 CA-repeat length using fragment analysis. Overall, 12.9% carried the IGF1-19/-19 genotype. There was a highly significant interaction between multiparity and IGF1-19/-19 on age at breast cancer diagnosis (P=0.007). Among IGF1-19/-19 patients, multiparity was associated with a 9.2 year earlier age at diagnosis compared with uniparity or nulliparity (P=0.006). Multiparity combined with IGF1-19/-19 was associated with an early age at breast cancer diagnosis. If confirmed, IGF1-19/-19 may help identify a subgroup of women for earlier breast cancer screening

    A Unique Signal Distorts the Perception of Species Richness and Composition in High-Throughput Sequencing Surveys of Microbial Communities: a Case Study of Fungi in Indoor Dust

    Get PDF
    Sequence-based surveys of microorganisms in varied environments have found extremely diverse assemblages. A standard practice in current high-throughput sequence (HTS) approaches in microbial ecology is to sequence the composition of many environmental samples at once by pooling amplicon libraries at a common concentration before processing on one run of a sequencing platform. Biomass of the target taxa, however, is not typically determined prior to HTS, and here, we show that when abundances of the samples differ to a large degree, this standard practice can lead to a perceived bias in community richness and composition. Fungal signal in settled dust of five university teaching laboratory classrooms, one of which was used for a mycology course, was surveyed. The fungal richness and composition in the dust of the nonmycology classrooms were remarkably similar to each other, while the mycology classroom was dominated by abundantly sporulating specimen fungi, particularly puffballs, and appeared to have a lower overall richness based on rarefaction curves and richness estimators. The fungal biomass was three to five times higher in the mycology classroom than the other classrooms, indicating that fungi added to the mycology classroom swamped the background fungi present in indoor air. Thus, the high abundance of a few taxa can skew the perception of richness and composition when samples are sequenced to an even depth. Next, we used in silico manipulations of the observed data to confirm that a unique signature can be identified with HTS approaches when the source is abundant, whether or not the taxon identity is distinct. Lastly, aerobiology of indoor fungi is discussed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00248-013-0266-4) contains supplementary material, which is available to authorized users

    Promotion of protocell self-assembly from mixed amphiphiles at the origin of life

    Get PDF
    Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1–3 SCAs, even though Fischer–Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10–C15 compounds. Here, we show that mixtures of these C10–C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it

    Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest

    Get PDF
    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis
    • …
    corecore