426 research outputs found

    Construction and test of a new CBM-TRD prototype in Frankfurt

    Get PDF

    Poly‐aneuploid cancer cells promote evolvability, generating lethal cancer

    Full text link
    Cancer cells utilize the forces of natural selection to evolve evolvability allowing a constant supply of heritable variation that permits a cancer species to evolutionary track changing hazards and opportunities. Over time, the dynamic tumor ecosystem is exposed to extreme, catastrophic changes in the conditions of the tumor—natural (e.g., loss of blood supply) or imposed (therapeutic). While the nature of these catastrophes may be varied or unique, their common property may be to doom the current cancer phenotype unless it evolves rapidly. Poly‐aneuploid cancer cells (PACCs) may serve as efficient sources of heritable variation that allows cancer cells to evolve rapidly, speciate, evolutionarily track their environment, and most critically for patient outcome and survival, permit evolutionary rescue, therapy resistance, and metastasis. As a conditional evolutionary strategy, they permit the cancer cells to accelerate evolution under stress and slow down the generation of heritable variation when conditions are more favorable or when the cancer cells are closer to an evolutionary optimum. We hypothesize that they play a critical and outsized role in lethality by their increased capacity for invasion and motility, for enduring novel and stressful environments, and for generating heritable variation that can be dispensed to their 2N+ aneuploid progeny that make up the bulk of cancer cells within a tumor, providing population rescue in response to therapeutic stress. Targeting PACCs is essential to cancer therapy and patient cure—without the eradication of the resilient PACCs, cancer will recur in treated patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156440/2/eva12929_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156440/1/eva12929.pd

    Prevention of ulcer disease in goldfish by means of vaccination

    Get PDF
    A vaccine comprising cells of Aeromonas bestiarum grown in tryptic soy broth and atypical A. salmonicida cells produced in iron-limited and iron-supplemented media protected goldfish Carassius auratus when administered by immersion (dosage ≈ 5 × 107 cells/mL for 60 s) followed after 28 d by an oral booster (dosage = 5 × 107 cells/g of feed), which was fed for 7 d so that each fish received about 1 g of vaccine-containing feed. After challenge by intramuscular injection of a virulent culture of atypical A. salmonicida, the relative percent survival (RPS) was more than 90%. The approach was more successful than using a commercial furunculosis vaccine with or without supplementation with A. bestiarum or atypical A. salmonicida cells. Moreover, a smooth derivative of the virulent rough culture of atypical A. salmonicida was less effective as a vaccine candidate, yielding an RPS of only 65%. Low antibody titers of 1:39–1:396 were found in the vaccinated fish. The vaccinated fish had a significantly higher proportion of dead head kidney macrophages (10.9 ± 3.5%; P = 0.0149) than did the controls (6.8 ± 3.1%). However, differences in the number of erythrocytes and leukocytes, the level of phagocytic and lysozyme activities, and the proportion of lymphocytes, monocytes, and polymorphonuclear cells were not statistically significant between the two groups

    Establishing bacterial infectivity models in striped Catfish Pangasianodon hypophthalmus (Sauvage) with Edwardsiella ictaluri

    Get PDF
    A bacterial infectivity challenge model of Edwardsiella ictaluri in striped catfish was developed. All experiments were conducted using a bacterial isolate of E. ictaluri that had been recovered during a natural outbreak of bacillary necrosis of Pangasianodon (BNP) in farmed striped catfish Pangasianodon hypophthalmus in Vietnam. Time of immersion in 107 CFU.ml−1 had a significant effect on mortality. The immersion bacterial dose of 107 CFU/ml for 30 s resulted in a cumulative percentage mortality of 63%. Three to four days post‐bacterial challenge, fish showed gross clinical signs of natural BNP and E. ictaluri was recovered and identified from these fish. Moreover, a cohabitation challenge was evaluated as an alternative challenge method, although the mortalities among the infected fish were lower at around 15%–40%. This study confirmed the horizontal transmission of E. ictaluri in striped catfish and elucidated that cohabitation challenge could be used in reproducing the disease under controlled conditions

    NBC update: The addition of viral and fungal databases to the NaĂŻve Bayes classification tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classifying the fungal and viral content of a sample is an important component of analyzing microbial communities in environmental media. Therefore, a method to classify any fragment from these organisms' DNA should be implemented.</p> <p>Results</p> <p>We update the näive Bayes classification (NBC) tool to classify reads originating from viral and fungal organisms. NBC classifies a fungal dataset similarly to Basic Local Alignment Search Tool (BLAST) and the Ribosomal Database Project (RDP) classifier. We also show NBC's similarities and differences to RDP on a fungal large subunit (LSU) ribosomal DNA dataset. For viruses in the training database, strain classification accuracy is 98%, while for those reads originating from sequences not in the database, the order-level accuracy is 78%, where order indicates the taxonomic level in the tree of life.</p> <p>Conclusions</p> <p>In addition to being competitive to other classifiers available, NBC has the potential to handle reads originating from any location in the genome. We recommend using the Bacteria/Archaea, Fungal, and Virus databases separately due to algorithmic biases towards long genomes. The tool is publicly available at: <url>http://nbc.ece.drexel.edu</url>.</p

    Front-end electronics for the ALICE TPC-detector

    Get PDF
    The Front-End electronics for the Time Projection Chamber (TPC) for the ALICE experiment consists of 5x105 channels. A single readout channel is comprised of three basic units: a charge sensitive amplifier/shaper with a fast tail cancellation; a 10 bit 10 Msamples/sec low power ADC; a digital ASIC which contains the zero suppression circuit and a multiple-event buffer. Data from a number of channels (4096) are multiplexed into an optical link (DDL) by means of a local custom bus which can support a data throughput of 2 Mbyte/event at a trigger rate of 50 Hz. The construction of a prototype of this electronics is presented in this paper

    Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient

    Get PDF
    • Changes in species richness and distributions of ectomycorrhizal (ECM) fungal communities along altitudinal gradients have been attributed to changes in both host distributions and abiotic variables. However, few studies have considered altitudinal relationships of ECM fungi associated with a single host to identify the role of abiotic drivers. To address this, ECM fungal communities associated with one host were assessed along five altitudinal transects in Scotland. • Roots of Scots pine (Pinus sylvestris) were collected from sites between 300 and 550–600 m altitude, and ECM fungal communities were identified by 454 pyrosequencing of the fungal internal transcribed spacer (ITS) region. Soil moisture, temperature, pH, carbon : nitrogen (C : N) ratio and organic matter content were measured as potential predictors of fungal species richness and community composition. • Altitude did not affect species richness of ECM fungal communities, but strongly influenced fungal community composition. Shifts in community composition along the altitudinal gradient were most clearly related to changes in soil moisture and temperature. • Our results show that a 300 m altitudinal gradient produced distinct shifts in ECM fungal communities associated with a single host, and that this pattern was strongly related to climatic variables. This finding suggests significant climatic niche partitioning among ECM fungal species

    Bioencapsulation and Colonization Characteristics of Lactococcus lactis subsp. lactis CF4MRS in Artemia franciscana: a Biological Approach for the Control of Edwardsiellosis in Larviculture

    Get PDF
    Predominance of beneficial bacteria helps to establish a healthy microbiota in fish gastrointestinal system and thus to reduce emerging pathogen. In this study, the colonization efficacy of Lactococcus lactis subsp. lactis CF4MRS in Artemia franciscana and its potential as a probiotic in suppressing Edwardsiella sp. infection were investigated in vivo. The colonization extent of the bioencapsulated L. lactis was established through visualization of gfp gene-transformed L. lactis in A. franciscana. Here, we demonstrate that when A. franciscana is administrated with L. lactis at 108 CFU mL−1 for 8 h, the highest relative percentage of survival (RPS = 50.0) is observed after inoculation with Edwardsiella sp. The total counts of L. lactis entrapped in Artemia were the highest (ranged from 3.2 to 5.1 × 108 CFU mL−1), when 108–109 CFU mL−1 of L. lactis was used as starting inoculum, with the bioencapsulation performed within 8–24 h. Fluorescent microscopy showed gfp-transformed L. lactis colonized the external trunk surfaces, mid-gut and locomotion antennules of the A. franciscana nauplii. These illustrations elucidate the efficiency of colonization of L. lactis in the gastrointestinal tract and on the body surfaces of Artemia. In conclusion, L. lactis subsp. lactis CF4MRS shows a good efficacy of colonization in Artemia and has the potential for biocontrol/probiotic activity against Edwardsiella sp. infection

    A Unique Signal Distorts the Perception of Species Richness and Composition in High-Throughput Sequencing Surveys of Microbial Communities: a Case Study of Fungi in Indoor Dust

    Get PDF
    Sequence-based surveys of microorganisms in varied environments have found extremely diverse assemblages. A standard practice in current high-throughput sequence (HTS) approaches in microbial ecology is to sequence the composition of many environmental samples at once by pooling amplicon libraries at a common concentration before processing on one run of a sequencing platform. Biomass of the target taxa, however, is not typically determined prior to HTS, and here, we show that when abundances of the samples differ to a large degree, this standard practice can lead to a perceived bias in community richness and composition. Fungal signal in settled dust of five university teaching laboratory classrooms, one of which was used for a mycology course, was surveyed. The fungal richness and composition in the dust of the nonmycology classrooms were remarkably similar to each other, while the mycology classroom was dominated by abundantly sporulating specimen fungi, particularly puffballs, and appeared to have a lower overall richness based on rarefaction curves and richness estimators. The fungal biomass was three to five times higher in the mycology classroom than the other classrooms, indicating that fungi added to the mycology classroom swamped the background fungi present in indoor air. Thus, the high abundance of a few taxa can skew the perception of richness and composition when samples are sequenced to an even depth. Next, we used in silico manipulations of the observed data to confirm that a unique signature can be identified with HTS approaches when the source is abundant, whether or not the taxon identity is distinct. Lastly, aerobiology of indoor fungi is discussed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00248-013-0266-4) contains supplementary material, which is available to authorized users
    • …
    corecore