145 research outputs found
Recommended from our members
Generation of Lamprey Monoclonal Antibodies (Lampribodies) Using the Phage Display System.
The variable lymphocyte receptors (VLRs) consist of leucine rich repeats (LRRs) and comprise the humoral antibodies produced by lampreys and hagfishes. The diversity of the molecules is generated by stepwise genomic rearrangements of LRR cassettes dispersed throughout the VLRB locus. Previously, target-specific monovalent VLRB antibodies were isolated from sea lamprey larvae after immunization with model antigens. Further, the cloned VLR cDNAs from activated lamprey leukocytes were transfected into human cell lines or yeast to select best binders. Here, we expand on the overall utility of the VLRB technology by introducing it into a filamentous phage display system. We first tested the efficacy of isolating phage into which known VLRB molecules were cloned after a series of dilutions. These experiments showed that targeted VLRB clones could easily be recovered even after extensive dilutions (1 to 109). We further utilized the system to isolate target-specific "lampribodies" from phage display libraries from immunized animals and observed an amplification of binders with relative high affinities by competitive binding. The lampribodies can be individually purified and ostensibly utilized for applications for which conventional monoclonal antibodies are employed
Sequence and organization of coelacanth neurohypophysial hormone genes: Evolutionary history of the vertebrate neurohypophysial hormone gene locus
<p>Abstract</p> <p>Background</p> <p>The mammalian neurohypophysial hormones, vasopressin and oxytocin are involved in osmoregulation and uterine smooth muscle contraction respectively. All jawed vertebrates contain at least one homolog each of vasopressin and oxytocin whereas jawless vertebrates contain a single neurohypophysial hormone called vasotocin. The vasopressin homolog in non-mammalian vertebrates is vasotocin; and the oxytocin homolog is mesotocin in non-eutherian tetrapods, mesotocin and [Phe<sup>2</sup>]mesotocin in lungfishes, and isotocin in ray-finned fishes. The genes encoding vasopressin and oxytocin genes are closely linked in the human and rodent genomes in a tail-to-tail orientation. In contrast, their pufferfish homologs (vasotocin and isotocin) are located on the same strand of DNA with isotocin gene located upstream of vasotocin gene separated by five genes, suggesting that this locus has experienced rearrangements in either mammalian or ray-finned fish lineage, or in both lineages. The coelacanths occupy a unique phylogenetic position close to the divergence of the mammalian and ray-finned fish lineages.</p> <p>Results</p> <p>We have sequenced a coelacanth (<it>Latimeria menadoensis</it>) BAC clone encompassing the neurohypophysial hormone genes and investigated the evolutionary history of the vertebrate neurohypophysial hormone gene locus within a comparative genomics framework. The coelacanth contains vasotocin and mesotocin genes like non-mammalian tetrapods. The coelacanth genes are present on the same strand of DNA with no intervening genes, with the vasotocin gene located upstream of the mesotocin gene. Nucleotide sequences of the second exons of the two genes are under purifying selection implying a regulatory function. We have also analyzed the neurohypophysial hormone gene locus in the genomes of opossum, chicken and <it>Xenopus tropicalis</it>. The opossum contains two tandem copies of vasopressin and mesotocin genes. The vasotocin and mesotocin genes in chicken and <it>Xenopus</it>, and the vasopressin and mesotocin genes in opossum are linked tail-to-head similar to their orthologs in coelacanth and unlike their homologs in human and rodents.</p> <p>Conclusion</p> <p>Our results indicate that the neurohypophysial hormone gene locus has experienced independent rearrangements in both placental mammals and teleost fishes. The coelacanth genome appears to be more stable than mammalian and teleost fish genomes. As such, it serves as a valuable outgroup for studying the evolution of mammalian and teleost fish genomes.</p
Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula).
BackgroundAcipenseriformes is a basal lineage of ray-finned fishes and comprise 27 extant species of sturgeons and paddlefishes. They are characterized by several specific genomic features as broad ploidy variation, high chromosome numbers, presence of numerous microchromosomes and propensity to interspecific hybridization. The presumed palaeotetraploidy of the American paddlefish was recently validated by molecular phylogeny and Hox genes analyses. A whole genome duplication in the paddlefish lineage was estimated at approximately 42 Mya and was found to be independent from several genome duplications evidenced in its sister lineage, i.e. sturgeons. We tested the ploidy status of available chromosomal markers after the expected rediploidization. Further we tested, whether paralogs of Hox gene clusters originated from this paddlefish specific genome duplication are cytogenetically distinguishable.ResultsWe found that both paralogs HoxA alpha and beta were distinguishable without any overlapping of the hybridization signal - each on one pair of large metacentric chromosomes. Of the HoxD, only the beta paralog was unequivocally identified, whereas the alpha paralog did not work and yielded only an inconclusive diffuse signal. Chromosomal markers on three diverse ploidy levels reflecting different stages of rediploidization were identified: quadruplets retaining their ancestral tetraploid condition, semi-quadruplets still reflecting the ancestral tetraploidy with clear signs of advanced rediploidization, doublets were diploidized with ancestral tetraploidy already blurred. Also some of the available microsatellite data exhibited diploid allelic band patterns at their loci whereas another locus showed more than two alleles.ConclusionsOur exhaustive staining of paddlefish chromosomes combined with cytogenetic mapping of ribosomal genes and Hox paralogs and with microsatellite data, brings a closer look at results of the process of rediploidization in the course of paddlefish genome evolution. We show a partial rediploidization represented by a complex mosaic structure comparable with segmental paleotetraploidy revealed in sturgeons (Acipenseridae). Sturgeons and paddlefishes with their high propensity for whole genome duplication thus offer suitable animal model systems to further explore evolutionary processes that were shaping the early evolution of all vertebrates
Discovery of large genomic inversions using long range information.
BackgroundAlthough many algorithms are now available that aim to characterize different classes of structural variation, discovery of balanced rearrangements such as inversions remains an open problem. This is mainly due to the fact that breakpoints of such events typically lie within segmental duplications or common repeats, which reduces the mappability of short reads. The algorithms developed within the 1000 Genomes Project to identify inversions are limited to relatively short inversions, and there are currently no available algorithms to discover large inversions using high throughput sequencing technologies.ResultsHere we propose a novel algorithm, VALOR, to discover large inversions using new sequencing methods that provide long range information such as 10X Genomics linked-read sequencing, pooled clone sequencing, or other similar technologies that we commonly refer to as long range sequencing. We demonstrate the utility of VALOR using both pooled clone sequencing and 10X Genomics linked-read sequencing generated from the genome of an individual from the HapMap project (NA12878). We also provide a comprehensive comparison of VALOR against several state-of-the-art structural variation discovery algorithms that use whole genome shotgun sequencing data.ConclusionsIn this paper, we show that VALOR is able to accurately discover all previously identified and experimentally validated large inversions in the same genome with a low false discovery rate. Using VALOR, we also predicted a novel inversion, which we validated using fluorescent in situ hybridization. VALOR is available at https://github.com/BilkentCompGen/VALOR
Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The Tasmanian devil (Sarcophilus harrisii) is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD). DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. RESULTS: Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. CONCLUSIONS: The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species
Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC
BACKGROUND The Tasmanian devil (Sarcophilus harrisii) is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD). DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. RESULTS Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. CONCLUSIONS The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species.This work was funded by an ARC Future Fellowship to KB (FT0992212), the
Eric Guiler fund and the Tasmanian Department of Primary Industries, Parks,
Water and the Environment. YC was supported by an Endeavour
International Postgraduate Research Scholarship, KM by an Australian
Postgraduate Award and an ARC Linkage Grant
Conservation of shh cis-regulatory architecture of the coelacanth is consistent with its ancestral phylogenetic position
<p>Abstract</p> <p>Background</p> <p>The modern coelacanth (<it>Latimeria</it>) is the extant taxon of a basal sarcopterygian lineage and sister group to tetrapods. Apart from certain apomorphic traits, its morphology is characterized by a high degree of retention of ancestral vertebrate structures and little morphological change. An insight into the molecular evolution that may explain the unchanged character of <it>Latimeria </it>morphology requires the analysis of the expression patterns of developmental regulator genes and their <it>cis</it>-regulatory modules (CRMs).</p> <p>Results</p> <p>We describe the comparative and functional analysis of the <it>sonic hedgehog </it>(<it>shh</it>) genomic region of <it>Latimeria menadoensis</it>. Several putative enhancers in the <it>Latimeria shh </it>locus have been identified by comparisons to sarcopterygian and actinopterygian extant species. Specific sequence conservation with all known actinopterygian enhancer elements has been detected. However, these elements are selectively missing in more recently diverged actinopterygian and sarcopterygian species. The functionality of the putative <it>Latimeria </it>enhancers was confirmed by reporter gene expression analysis in transient transgenic zebrafish and chick embryos.</p> <p>Conclusions</p> <p><it>Latimeria shh </it>CRMs represent the ancestral set of enhancers that have emerged before the split of lobe-finned and ray-finned fishes. In contrast to lineage-specific losses and differentiations in more derived lineages, <it>Latimeria shh </it>enhancers reveal low levels of sequence diversification. High overall sequence conservation of <it>shh </it>conserved noncoding elements (CNE) is consistent with the general trend of high levels of conservation of noncoding DNA in the slowly evolving <it>Latimeria </it>genome.</p
- …