786 research outputs found

    Analytical Investigation of Higher Education Quality Improvement by Using Six Sigma Approach

    Get PDF
    For over two decades in India, the technical industry's unique selling proposition (USP), with its wide infrastructure of technical institutes, has been capable of supplying best-in-class engineers. But recently, this claim does not hold water. According to the All India Council for Technical Education (AICTE), about 2.6 lakh mechanical engineers graduate every year in India. But the real count of industry ready mechanical engineers is approximately 7%. Hence, there is a need to assess the quality of engineering education in India to reduce the flaws in higher education. The purpose of the paper is to identify the various defects associated with technical education and eliminate those defects using various quality tools. This research is based on the six sigma technique, which is used to assess the quality criteria proposed by the National Board of Accreditation India (NBA). The proposed model is then applied to a typical tier II Indian engineering college located in south India. Six Sigma has two main methodologies: DMAIC and DFSS. The DMAIC (Define, Measure, Analyze, Improve, and Control) methodology is implemented for existing systems, whereas DFSS (Design for Six Sigma) is for assuring quality in new products. In this project, the conclusion is driven by the DMAIC methodology. Various statistical and non-statistical tools are employed in this research. The tools used are CTS-CTQ, SIPOC, Pareto chart, normal process capability analysis, one-way ANOVA, Ishikawa diagram, FMEA, RCBD, and SPC chart. All the statistical processes are done using Minitab analytical software. From the results, it is identified that the factors that have a risk priority number (RPN) greater than 300 need improvement, such as versatility in program curriculum, laboratories and workshops, and credibility among universities. Six Sigma can be achieved by developing proper strategies for mitigating these defects. Doi: 10.28991/HIJ-2022-03-02-07 Full Text: PD

    Preparation and characterization of powdered activated carbon from empty fruit bunch

    Get PDF
    Different powdered activated carbon (PAC) samples were prepared from oil palm industrial residue namely empty fruit bunch (EFB). The prepared EFB samples were carbonized and activated in a horizontal furnace. Physical activation consisted of carbonization for 30 minutes using nitrogen gas followed by activation with CO2 gas at different flow rates, temperature and time were used to optimize production conditions. The PAC samples produced were investigated through adsorption study using phenol aqueous solution of 50 mg/L concentration. Characterizations of the best quality PAC samples produced were determined. The result of this work demonstrated that activation temperature had significant effect on the adsorption properties of the activated carbons. The PAC produced at activation temperature of 800oC, CO2 gas flow rate of 0.1 L/min and activation time of 15 minutes proved to be the best quality adsorbent as it had given 95.54% of phenol removal at initial 15 minutes contact time. Characterization of EFB based-PAC showed good quality adsorbent with highly active sites and well-developed pores with BET surface area of 374.37 m2/g. The experimental results indicated that the activated carbon prepared from EFB is a promising product in industrial applications as well in water and wastewater treatment

    INDIGO : better geomagnetic observatories where we need them

    Get PDF
    The INDIGO project aims to improve the global coverage of digital observatories by deploying digital magnetometer systems in: i) Observatories where existing analog recording equipment is in need of upgrading. ii) Newly established digital observatories. iii) Existing digital observatories for the purpose of quality control and redundancy. In implementing the project and selecting suitable sites, special attention is paid to parts of the Earth devoid of magnetic observatories, increasing the reliability and long-term operation of existing observatories and cost-effective use of local resources. The Poster reviews the current status of the project. We examine the different steps and initiatives taken since the initiation of INDIGO in 2004 and assess their effectiveness in achieving progress towards our aims of improving global coverage and enhanced data quality

    A pseudo-spectral scheme for systems of two-point boundary value problems with left and right sided fractional derivatives and related integral equations

    Full text link
    We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left- and right-sided fractional derivatives. The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations. Then, a Legendre-based spectral collocation method is developed for solving the transformed system. Therefore, we can make good use of the advantages of the Gauss quadrature rule. We present the construction and analysis of the collocation method. These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler-Lagrange equations. Two numerical examples are given to confirm the convergence analysis and robustness of the scheme. © 2021 Tech Science Press. All rights reserved.Russian Foundation for Basic Research, РФФИ: 19-01-00019The Russian Foundation for Basic Research (RFBR) Grant No. 19-01-00019

    Dizajniranje i sinteza novih derivata tiofenkarbohidrazida, tienopirazola i tienopirimidina s antioksidativnim i antitumorskim djelovanjem

    Get PDF
    2-Amino-5-acetyl-4-methyl-thiophene-3-carboxylic acid ethyl ester (1) and 5-acetyl-2-amino-4-methylthiophene-3-carbohydrazide (2) were synthesized and used as starting materials for the synthesis of new series of 1-(5-amino-4-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-3-methylthiophen-2-yl) ethanone (3a), 1-(5-amino-4-(4-chloro-3,5-dimethyl-1H-pyrazole-1-carbonyl)-3-methylthiophen-2-yl) ethanone (3b), 1-(4-methyl-2-amino-5-acetylthiophene-3-carbonyl) pyrazolidine-3,5-dione (4), (Z)-N\u27-(4-methyl-2-amino-5-acetylthiophene-3-carbonyl) formohydrazonic acid (5a), (Z)-ethyl-N\u27-(4-methyl-2-amino-5-acetylthiophene-3-carbonylformo hydrazonate (5b), 6-acetyl-3-amino-2,5-dimethylthieno2,3-dpyrimidin-4(3H)-one (8), 5-methyl-3-amino-2-mercapto-6-acetylthieno2,3-dpyrimidin-4(3H)-one (10) and 5-methyl-6-acetyl-2-thioxo-2,3-dihydrothieno2,3-dpyrimidin-4(1H)-one (12) as potential antioxidant and antitumor agents. Pharmacological results showed that compounds 6a, 6b, 8, 10 and 12 exhibited promising antitumor and antioxidant activity.Etilni ester 2-amino-5-acetil-4-metil-tiofen-3-karboksilne kiseline (1) i 5-acetil-2-amino-4-metiltiofen-3-karbohidrazid (2) sintetizirani su i upotrebljeni kao reaktanti u sintezi novih spojeva 1-(5-amino-4-(3,5-dimetil-1H-pirazol-1-karbonil)-3-metiltiofen-2-il) etanona (3a), 1-(5-amino-4-(4-klor-3,5-dimetil-1H-pirazol-1-karbonil)-3-metiltiofen-2-il) etanona (3b), 1-(4-metil-2-amino-5-acetiltiofen-3-karbonil) pirazolidin-3,5-diona (4), (Z)-N\u27-(4-metil-2-amino-5-acetiltiofen-3-karbonil) formohidrazonske kiseline (5a), (Z)-etil-N\u27-(4-metil-2-amino-5-acetiltiofen-3-karbonilformo hidrazonata (5b), 6-acetil-3-amino-2,5-dimetiltieno2,3-dpirimidin-4(3H)-one (8), 5-metil-3-amino-2-merkapto-6-acetiltieno2,3-dpirimidin-4(3H)-ona (10) i 5-metil-6-acetil-2-tiokso-2,3-dihidrotieno2,3-dpirimidin-4(1H)-ona (12) kao potencijalnih antioksidansa i citostatika. Farmakološka ispitivanja ukazuju na to da spojevi 6a, 6b, 8, 10 i 12 imaju značajno antitumorsko i antioksidativno djelovanje

    Dynamic modeling of mean-reverting spreads for statistical arbitrage

    Full text link
    Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.Comment: 34 pages, 6 figures. Submitte

    Neonatal resuscitation: EN-BIRTH multi-country validation study.

    Get PDF
    BACKGROUND: Annually, 14 million newborns require stimulation to initiate breathing at birth and 6 million require bag-mask-ventilation (BMV). Many countries have invested in facility-based neonatal resuscitation equipment and training. However, there is no consistent tracking for neonatal resuscitation coverage. METHODS: The EN-BIRTH study, in five hospitals in Bangladesh, Nepal, and Tanzania (2017-2018), collected time-stamped data for care around birth, including neonatal resuscitation. Researchers surveyed women and extracted data from routine labour ward registers. To assess accuracy, we compared gold standard observed coverage to survey-reported and register-recorded coverage, using absolute difference, validity ratios, and individual-level validation metrics (sensitivity, specificity, percent agreement). We analysed two resuscitation numerators (stimulation, BMV) and three denominators (live births and fresh stillbirths, non-crying, non-breathing). We also examined timeliness of BMV. Qualitative data were collected from health workers and data collectors regarding barriers and enablers to routine recording of resuscitation. RESULTS: Among 22,752 observed births, 5330 (23.4%) babies did not cry and 3860 (17.0%) did not breathe in the first minute after birth. 16.2% (n = 3688) of babies were stimulated and 4.4% (n = 998) received BMV. Survey-report underestimated coverage of stimulation and BMV. Four of five labour ward registers captured resuscitation numerators. Stimulation had variable accuracy (sensitivity 7.5-40.8%, specificity 66.8-99.5%), BMV accuracy was higher (sensitivity 12.4-48.4%, specificity > 93%), with small absolute differences between observed and recorded BMV. Accuracy did not vary by denominator option. < 1% of BMV was initiated within 1 min of birth. Enablers to register recording included training and data use while barriers included register design, documentation burden, and time pressure. CONCLUSIONS: Population-based surveys are unlikely to be useful for measuring resuscitation coverage given low validity of exit-survey report. Routine labour ward registers have potential to accurately capture BMV as the numerator. Measuring the true denominator for clinical need is complex; newborns may require BMV if breathing ineffectively or experiencing apnoea after initial drying/stimulation or subsequently at any time. Further denominator research is required to evaluate non-crying as a potential alternative in the context of respectful care. Measuring quality gaps, notably timely provision of resuscitation, is crucial for programme improvement and impact, but unlikely to be feasible in routine systems, requiring audits and special studies

    A comprehensive TALEN-based knockout library for generating human induced pluripotent stem cell-based models for cardiovascular diseases

    Get PDF
    Rationale: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusions: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research

    Clinically relevant potential drug-drug interactions in intensive care patients:A large retrospective observational multicenter study

    Get PDF
    Purpose: Potential drug-drug interactions (pDDIs) may harm patients admitted to the Intensive Care Unit (ICU). Due to the patient's critical condition and continuous monitoring on the ICU, not all pDDIs are clinically relevant. Clinical decision support systems (CDSSs) warning for irrelevant pDDIs could result in alert fatigue and overlooking important signals. Therefore, our aim was to describe the frequency of clinically relevant pDDIs (crpDDIs) to enable tailoring of CDSSs to the ICU setting. Materials & methods: In this multicenter retrospective observational study, we used medication administration data to identify pDDIs in ICU admissions from 13 ICUs. Clinical relevance was based on a Delphi study in which intensivists and hospital pharmacists assessed the clinical relevance of pDDIs for the ICU setting. Results: The mean number of pDDIs per 1000 medication administrations was 70.1, dropping to 31.0 when considering only crpDDIs. Of 103,871 ICU patients, 38% was exposed to a crpDDI. The most frequently occurring crpDDIs involve QT-prolonging agents, digoxin, or NSAIDs. Conclusions: Considering clinical relevance of pDDIs in the ICU setting is important, as only half of the detected pDDIs were crpDDIs. Therefore, tailoring CDSSs to the ICU may reduce alert fatigue and improve medication safety in ICU patients

    Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas

    Get PDF
    Plasmonic nanoantennas create locally strongly enhanced electric fields in so-called hot spots. To place a relevant nanoobject with high accuracy in such a hot spot is crucial to fully capitalize on the potential of nanoantennas to control, detect, and enhance processes at the nanoscale. With state-of-the-art nanofabrication, in particular when several materials are to be used, small gaps between antenna elements are sought, and large surface areas are to be patterned, this is a grand challenge. Here we introduce self-aligned, bottom-up and self-assembly based Shrinking-Hole Colloidal Lithography, which provides (i) unique control of the size and position of subsequently deposited particles forming the nanoantenna itself, and (ii) allows delivery of nanoobjects consisting of a material of choice to the antenna hot spot, all in a single lithography step and, if desired, uniformly covering several square centimeters of surface. We illustrate the functionality of SHCL nanoantenna arrangements by (i) an optical hydrogen sensor exploiting the polarization dependent sensitivity of an Au-Pd nanoantenna ensemble; and (ii) single particle hydrogen sensing with an Au dimer nanoantenna with a small Pd nanoparticle in the hot spot
    corecore