24 research outputs found

    In vivo white matter microstructure in adolescents with early-onset psychosis: a multi-site mega-analysis

    Get PDF
    Emerging evidence suggests brain white matter alterations in adolescents with early-onset psychosis (EOP; age of onset <18 years). However, as neuroimaging methods vary and sample sizes are modest, results remain inconclusive. Using harmonized data processing protocols and a mega-analytic approach, we compared white matter microstructure in EOP and healthy controls using diffusion tensor imaging (DTI). Our sample included 321 adolescents with EOP (median age = 16.6 years, interquartile range (IQR) = 2.14, 46.4% females) and 265 adolescent healthy controls (median age = 16.2 years, IQR = 2.43, 57.7% females) pooled from nine sites. All sites extracted mean fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for 25 white matter regions of interest per participant. ComBat harmonization was performed for all DTI measures to adjust for scanner differences. Multiple linear regression models were fitted to investigate case-control differences and associations with clinical variables in regional DTI measures. We found widespread lower FA in EOP compared to healthy controls, with the largest effect sizes in the superior longitudinal fasciculus (Cohen’s d = 0.37), posterior corona radiata (d = 0.32), and superior fronto‐ occipital fasciculus (d = 0.31). We also found widespread higher RD and more localized higher MD and AD. We detected significant effects of diagnostic subgroup, sex, and duration of illness, but not medication status. Using the largest EOP DTI sample to date, our findings suggest a profile of widespread white matter microstructure alterations in adolescents with EOP, most prominently in male individuals with early-onset schizophrenia and individuals with a shorter duration of illness

    Structural brain alterations associated with suicidal thoughts and behaviors in young people: results from 21 international studies from the ENIGMA Suicidal Thoughts and Behaviours consortium

    Get PDF
    Identifying brain alterations associated with suicidal thoughts and behaviors (STBs) in young people is critical to understanding their development and improving early intervention and prevention. The ENIGMA Suicidal Thoughts and Behaviours (ENIGMA-STB) consortium analyzed neuroimaging data harmonized across sites to examine brain morphology associated with STBs in youth. We performed analyses in three separate stages, in samples ranging from most to least homogeneous in terms of suicide assessment instrument and mental disorder. First, in a sample of 577 young people with mood disorders, in which STBs were assessed with the Columbia Suicide Severity Rating Scale (C-SSRS). Second, in a sample of young people with mood disorders, in which STB were assessed using different instruments, MRI metrics were compared among healthy controls without STBs (HC; N = 519), clinical controls with a mood disorder but without STBs (CC; N = 246) and young people with current suicidal ideation (N = 223). In separate analyses, MRI metrics were compared among HCs (N = 253), CCs (N = 217), and suicide attempters (N = 64). Third, in a larger transdiagnostic sample with various assessment instruments (HC = 606; CC = 419; Ideation = 289; HC = 253; CC = 432; Attempt=91). In the homogeneous C-SSRS sample, surface area of the frontal pole was lower in young people with mood disorders and a history of actual suicide attempts (N = 163) than those without a lifetime suicide attempt (N = 323; FDR-p = 0.035, Cohen's d = 0.34). No associations with suicidal ideation were found. When examining more heterogeneous samples, we did not observe significant associations. Lower frontal pole surface area may represent a vulnerability for a (non-interrupted and non-aborted) suicide attempt; however, more research is needed to understand the nature of its relationship to suicide risk.This work was supported by the MQ Brighter Futures Award MQBFC/2 (LS, LC, LV, MRD, LvV, ALvH, HB) and the U.S. National Institute of Mental Health under Award Number R01MH117601 (LS, LvV, NJ). LvV received funding through the National Suicide Prevention Research Fund, managed by Suicide Prevention Australia. LS is supported by an NHMRC Career Development Fellowship (1140764). ALvH is funded through the Social Safety and Resilience program of Leiden University. SA, NB, FP, and GS acknowledge that data collected in IRCCS Santa Lucia Foundation, Rome, Italy was funded by a study funded by the Italian Ministry of Health grant RC17-18-19-20-21/A. ZB, KC, B K-D acknowledge data collected at the University of Minnesota was funded by the National Institute of Mental Health (K23MH090421), the National Alliance for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, the Minnesota Medical Foundation, and the Biotechnology Research Center (P41 RR008079 to the Center for Magnetic Resonance Research), University of Minnesota, and the Deborah E. Powell Center for Women’s Health Seed Grant, University of Minnesota. HB acknowledges data collected at the Yale School of Medicine, New Haven, CT, USA, was funded by: MQ Brighter Futures, R61MH111929RC1MH088366, R01MH070902, R01MH069747, American Foundation for Suicide Prevention, International Bipolar Foundation, Brain and Behavior Research Foundation, For the Love of Travis Foundation and Women’s Health Research at Yale. LC is supported by Interdisziplinäres Zentrum für Klinische Forschung, UKJ. BCD was funded by a CJ Martin Fellowship (NHMRC app 1161356). BCD research leading to these results has received funding from the program “Investissements d’avenir” ANR-10-IAIHU-06. CGD and BJH acknowledge that data collected in Melbourne, Australia, was supported by Australian National Health and Medical Research Council of Australia (NHMRC) Project Grants 1064643 (principal investigator, BJH) and 1024570 (principal investigator, CGD). BJH and CGD were supported by NHMRC Career Development Fellowships (1124472 and 1061757, respectively). UD and TH acknowledge data collected at the FOR2107-Münster was funded by the German Research Foundation (DFG, grant FOR2107-DA1151/5-1 and DA1151/5-2 to UD, and DFG grants HA7070/2-2, HA7070/3, HA7070/4 to TH). AJ and TK acknowledges data collected at the FOR2107-Marburg was funded by the German Research Foundation (DFG, grant FOR2107-JA 1890/7-1 and JA 1890/7-2 to AJ, and DFG, grant FOR2107-KI588/14-1 and FOR2107-KI588/14-2 to TK). KD acknowledges data collected for the Münster Neuroimaging Cohort was funded by the Medical Faculty Münster, Innovative Medizinische Forschung (Grant IMF KO 1218 06 to KD). JMF, PBM, BJO, and GR acknowledge that the “Kids and Sibs” Study was supported by the Australian National Medical and Health Research Council (Program Grant 1037196 and Investigator Grant 1177991 to PBM, Project Grant 1066177 to JMF), the Lansdowne Foundation, Good Talk and the Keith Pettigrew Family Bequest (PM). JMF gratefully acknowledges the Janette Mary O’Neil Research Fellowship. IHG is supported in part by R37MH101495. Support for TAD comes from the National Institute of Mental Health (K01MH106805). TH acknowledges support for TIGER includes the Klingenstein Third Generation Foundation, the National Institute of Mental Health (K01MH117442), the Stanford Maternal Child Health Research Institute, and the Stanford Center for Cognitive and Neurobiological Imaging. TCH receives partial support from the Ray and Dagmar Dolby Family Fund. KAM, ABM, MAS acknowledge data collected at Harvard University was funded by the National Institute of Mental Health (R01-MH103291). IN is supported by grants of the Deutsche Forschungsgemeinschaft (DFG grants NE2254/1-2, NE2254/3-1, NE2254/4-1).This study was supported by the NationalCenter for Complementary and Integrative Health (NCCIH) R21AT009173 and R61AT009864 to TTY; by the National Center for Advancing Translational Sciences(CTSI), National Institutes of Health, through UCSF-CTSI UL1TR001872 to TTY; bythe American Foundation for Suicide Prevention (AFSP) SRG-1-141-18 to TTY; byUCSF Research Evaluation and Allocation Committee (REAC) and J. Jacobson Fundto TTY; by the National Institute of Mental Health (NIMH) R01MH085734 and the Brain and Behavior Research Foundation (formerly NARSAD) to TTY. YC acknowledges the Medical Leader Foundation of Yunnan Province (L2019011) and FamousDoctors Project of Yunnan Province Plan (YNWR-MY-2018-041). DTG, BCF and RAAwish to thank all PAFIP patients and family members who participated in the studyas well as PAFIP´s research team and Instituto de Investigación Marqués deValdecilla. Work by the PAFIP group has been funded by Instituto de Salud Carlos III through the projects PI14/00639, PI14/00918 and PI17/01056 (Co-funded byEuropean Regional Development Fund/European Social Fund “Investing in yourfuture”) and Fundación Instituto de Investigación Marqués de Valdecilla(NCT0235832 and NCT02534363). MER received support from the AustralianNational Health and Medical Research Council (NHMRC) Centre for ResearchExcellence on Suicide Prevention (CRESP) [GNT1042580]. ETCL is supported bygrants from NIAAA (K01AA027573, R21AA027884) and the American Foundationfor Suicide Prevention. All authors thank the participants for volunteering theirtime and supporting our research. Open Access funding enabled and organized by CAUL and its Member Institutions

    Mapping gray and white matter volume abnormalities in early-onset psychosis: an ENIGMA multicenter voxel-based morphometry study

    Get PDF
    Introduction: Regional gray matter (GM) alterations have been reported in early-onset psychosis (EOP, onset before age 18), but previous studies have yielded conflicting results, likely due to small sample sizes and the different brain regions examined. In this study, we conducted a whole brain voxel-based morphometry (VBM) analysis in a large sample of individuals with EOP, using the newly developed ENIGMA-VBM tool. Methods: 15 independent cohorts from the ENIGMA-EOP working group participated in the study. The overall sample comprised T1-weighted MRI data from 482 individuals with EOP and 469 healthy controls. Each site performed the VBM analysis locally using the standardized ENIGMA-VBM tool. Statistical parametric T-maps were generated from each cohort and meta-analyzed to reveal voxel-wise differences between EOP and healthy controls as well as the individual-based association between GM volume and age of onset, chlorpromazine (CPZ) equivalent dose, and other clinical variables. Results: Compared with healthy controls, individuals with EOP showed widespread lower GM volume encompassing most of the cortex, with the most marked effect in the left median cingulate (Hedges’ g = 0.55, p = 0.001 corrected), as well as small clusters of lower white matter (WM), whereas no regional GM or WM volumes were higher in EOP. Lower GM volume in the cerebellum, thalamus and left inferior parietal gyrus was associated with older age of onset. Deficits in GM in the left inferior frontal gyrus, right insula, right precentral gyrus and right superior frontal gyrus were also associated with higher CPZ equivalent doses. Conclusion: EOP is associated with widespread reductions in cortical GM volume, while WM is affected to a smaller extent. GM volume alterations are associated with age of onset and CPZ equivalent dose but these effects are small compared to case-control differences. Mapping anatomical abnormalities in EOP may lead to a better understanding of the role of psychosis in brain development during childhood and adolescence

    A worldwide study of white matter microstructural alterations in people living with Parkinson’s disease

    Get PDF
    The progression of Parkinson’s disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20–89 years; 33% female) and 885 controls (age: 19–84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen’s d effect sizes reached d = −1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).Stelios Katsanevakis, Michail Ragkousis, Maria Sini, Markos Digenis and Vasilis Gerovasileiou were supported by the Hellenic Foundation for Research and Innovation (HFRI) under the “First Call for HFRI Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project ALAS – “ALiens in the Aegean – a Sea under siege” (Katsanevakis et al. 2020b); Project Number: HFRI-FM17-1597). Konstantinos Tsirintanis was co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning”, 2014-2020, in the context of the Act “Enhancing Human Resources Research Potential by undertaking a Doctoral Research” Sub-action 2: IKY Scholarship Programme for PhD candidates in the Greek Universities. Maria Zotou was supported by the project “Coastal Environment Observatory and Risk Management in Island Regions AEGIS+” (MIS 5047038), implemented within the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020), co financed by the Hellenic Government (Ministry of Development and Investments) and the European Union (European Regional Development Fund, Cohesion Fund). Razy Hoffman was supported by Yad-Hanadiv Foundation, through the Israel Society of Ecology and Environmental Sciences and Israel Nature and Parks Authority, an integrated program for establishing biological baselines and monitoring protocols for marine reserves in the Israeli Mediterranean Sea (Grant #10669). Tatiana Begun, Adrian Teaca and Mihaela Muresan were supported by the European Union’s Horizon 2020 BRIDGE-BS project under grant agreement no. 101000240. Fiona Tomas was supported by the project “Invasion of the tropical alga Halimeda incrassata in the Balearic Islands: ecology and invasion dynamics (AAEE119/2017)”, funded by the Vicepresidencia y Consejería de Innovación, Investigación y Turismo del Govern de les Illes Balears, with support from the European Union and FEDER funds, and the project “Una nueva alga invasora en el Mediterráneo: invasibilidad, detección y erradicación del alga tropical Halimeda incrassata (INVHALI)”, funded by the Fundación Biodiversidad, del Ministerio para la Transición Ecológica y el Reto Demográfico. Simonetta Fraschetti, Laura Tamburello, Antonia Chiarore were supported by the project PO FEAMP 2014-2020 - DRD n. 35/2019, “Innovazione, sviluppo e sostenibilità nel settore della pesca e dell'acquacoltura per la Regione Campania” (ISSPA 2.51) and the EU EASME - EMFF (Sustainable Blue Econ-omy) Project AFRIMED (http://afrimed-project.eu/, grant agreement N. 789059). Carlos Jimenez, Louis Hadjioannou, Vasilis Resaikos, Valentina Fossati, Magdalene Papatheodoulou, and Antonis Petrou were supported by MedPan Small Projects, Mava, and LIFE-IP. Louis Hadjioannou, Manos L. Moraitis and Neophytos Agrotis received funding from the European Union’s Horizon 2020 research and innovation program within the framework of the CMMI/MaRITeC-X project under grant agreement No. 857586. Ernesto Azzurro was supported by the project USEIt - Utilizzo di Sinergie operative per la gestione integrata specie aliene Invasive in Italia, funded by the research programme @CNR. Antonietta Rosso and Francesco Sciuto were supported by the University of Catania through “PiaCeRi-Piano Incentivi per la Ricerca di Ateneo 2020–22 linea di intervento 2.” This is the Catania Paleoecological Research Group contribution n. 484. Diego K. Kersting was supported by the Beatriu de Pinós programme funded by the Secretary of Universities and Research (Government of Catalonia) and the Horizon 2020 programme of research and innovation of the European Union under the Marie Sklodowska-Curie grant agreement No 801370. Francesco Tiralongo was supported by the AlienFish project of Ente Fauna Marina Mediterranea (Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy), a citizen science project for monitoring and studying rare and non-indigenous fish in Italian waters. Adriana Vella, was supported by funds through the BioCon_Innovate Research Excellence Grant from the University of Malta awarded to her. Noel Vella was supported by REACH HIGH Scholars Programme-Post Doctoral Grant for the FINS project. Some of the records provided by Victor Surugiu were obtained during surveys carried out within the framework of the project “Adequate management of invasive species in Romania, in accordance with EU Regulation 1143/2014 on the prevention and management of the introduction and spread of invasive alien species”, SMIS 2014+ 120008, coordinated by the Romanian Ministry of Environment, Water and Forests in partnership with the University of Bucharest (2018–2022). Alan Deidun and Alessio Marrone were supported by the “Spot The Alien” citizen science campaign for the monitoring of the Alien species in the Maltese archipelago and by the Interreg Italia-Malta Harmony project. The authors from the National Institute of Biology (Slovenia) acknowledge the financial support of the Slovenian Research Agency (Research Core Funding No. P1-0237) and of the Ministry of Agriculture, Forestry and Food (project “Survey of the species richness and abundance of alien species in the Slovenian Sea”). Emanuele Mancini and Fabio Collepardo Coccia were supported by the project PO-FEAMP 2014-2020 “BIOBLITZ: research, knowledge and participation for the sustainable management of marine resources (BioBlitz Blu 2020)” coordinated by CURSA for MIPAAF, the Italian Ministry of Agricultural, Food and Forestry Policies, Measure 1.40 - Protection and restoration of biodiversity and marine ecosystems and compensation schemes in the context of sustainable fishing activities. Daniele Grech was supported by the PO-FEAMP 2014-2020 project ECOGESTOCK “Approccio ECOsistemico per la tutela e la GEStione delle risorse biologiche e STOCK ittici nelle acque interne”, the citizen science project Progetto Fucales: chi le ha viste? and the Paralenz Every dive counts sponsor. Jamila Rizgalla was supported by the project Snowball for the monitoring of alien species in Libyan waters له اهتفش له اهتدطصا ؟) have you seen it have you fished it?). Gerasimos Kondylatos and Dimitrios Mavrouleas were supported by the project “EXPLIAS” (MIS (ΟΠΣ): 5049912), design and piloting methods of commercial exploitation of invasive alien species with a view to contributing to their population control, coordinated by the National Technical University of Athens with the collaboration of the Hellenic Centre for Marine Research and the University of the Aegean and co-founded by Greece and the European Union. G. Kondylatos and Savvas Nikolidakis were supported by the project “SAMOS” (ID CODE: 32.2072004/001), a study for a submarine productive park in Marathokampos of Samos. Paraskevi K. Karachle, Aikaterini Dogrammatzi, Giorgos A. Apostolopoulos, Kassiani Konida and Melina Nalmpanti were supported by the project “4ALIEN: Biology and the potential economic exploitation of four alien species in the Hellenic Seas”, funded by NRSF 2017-2020 (MIS (ΟΠΣ): 5049511). Fabio Crocetta and Riccardo Virgili were partially funded by the project PO FEAMP Campania 2014–2020, DRD n. 35 of 15th March 2018, Innovazione, sviluppo e sostenibilità nel settore della pesca e dell’acquacoltura per la regione Campania, Misura 2.51, WP5, Task 5.5 Presenza e distribuzione di specie non indigene del macrozoobenthos e del necton in Campania. Michel Bariche was partially funded by the University Research Board of the American University of Beirut (DDF 103951/2592). Constantinos G. Georgiadis, Dimitra Lida Rammou, Paschalis Papadamakis and Sotiris Orfanidis were supported by the MSFD monitoring program. Sonia Smeraldo was supported by the MPA-Engage project, led by the Institute of Marine Sciences of the Spanish National Research Council and funded by the Interreg MED program. Evgeniia Karpova acknowledge that the publication of this article was in part carried out within the framework of the state assignment of the FRC IBSS “Patterns of Formation and Anthropogenic Transformation of Biodiversity and Bioresources of the Azov– Black Sea Basin and Other Regions of the World Ocean” (No. 121030100028-0). Elena Slynko’s work was carried out within the framework of a State Assignment no. 121051100109-1 of IBIW RAS. Manuela Falautano and Luca Castriota were supported by ISPRA citizen science campaigns for the monitoring of alien species through the dedicated institutional project ([email protected]). María Altamirano was supported by the project RUGULOPTERYX funded by Fundación Biodiversidad-Ministerio para la Transición Ecológica y el reto Demográfico (Spain) and the project UMA20-FEDERJA-006 with support from the European Union and FEDER funds and Junta de Andalucía. Records provided by L. Mangialajo were collected in the framework of projects funded by the Pew Charitable Trust, by the European Commission (AFRIMED, http://afrimed-project.eu/, grant agreement N. 789059) and by the Académie 3 de l’Université Côte d’Azur (projet CONVOST).Peer reviewe

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe

    Multiplex array analysis of circulating cytokines and chemokines in natalizumab-treated patients with multiple sclerosis

    Get PDF
    Natalizumab greatly reduces inflammatory relapses in multiple sclerosis (MS) by blocking the integrin-mediated leukocyte traffic to the brain, but less is known about its effects on the systemic immunity. We measured 48 cytokines/chemokines in sera from 19 natalizumab-treated MS patients. Serum concentrations of both anti-(IL-10, IL1ra) and pro-inflammatory (IL7, IL16) molecules decreased after 21-month treatment, without associations to unbalanced Th2/Th1cytokine ratios, clinical responses, and blood/urine replication of polyomavirus JC (JCPyV). No patient developed the JCPyV-related progressive multifocal leukoencephalopathy (PML), the major risk factor of natalizumab therapy. Our data suggest that natalizumab has marginal impact on the systemic immunity

    A superior all-natural antioxidant biomaterial from spent coffee grounds for polymer stabilization, cell protection, and food lipid preservation

    No full text
    Treatment with boiling 6 M HCl increases up to 30 times the intrinsic antioxidant potency of spent coffee grounds, leading to a versatile multifunctional material (hydrolyzed spent coffee grounds, HSCG). Spectral and morphological analyses suggest that the remarkable potentiation of the antioxidant activity is due to efficient removal of the hydrolyzable components, mainly carbohydrates, making the polyphenol-rich component available for interaction with free radicals and oxidizing species. HSCG efficiently protects hepatocarcinoma (HepG2) cells from oxidative stress-induced injury and delays lipid peroxidation in fish and soybean oils. Moreover, films made of polyethylene/2% HSCG blends display greater stability to thermal and photo-oxidative degradation. HSCG may thus represent an easily accessible and sustainable alternative to currently available biomaterials with intrinsic antioxidant properties for biomedical, industrial, and technological applications.This work was partially supported by grants from Italian MIUR (PRIN 2010-2011 PROxi project).Peer Reviewe

    A Superior All-Natural Antioxidant Biomaterial from Spent Coffee Grounds for Polymer Stabilization, Cell Protection, and Food Lipid Preservation

    No full text
    Treatment with boiling 6 M HCl increases up to 30 times the intrinsic antioxidant potency of spent coffee grounds, leading to a versatile multifunctional material (hydrolyzed spent coffee grounds, HSCG). Spectral and morphological analyses suggest that the remarkable potentiation of the antioxidant activity is due to efficient removal of the hydrolyzable components, mainly carbohydrates, making the polyphenol-rich component available for interaction with free radicals and oxidizing species. HSCG efficiently protects hepatocarcinoma (HepG2) cells from oxidative stress-induced injury and delays lipid peroxidation in fish and soybean oils. Moreover, films made of polyethylene/2% HSCG blends display greater stability to thermal and photo-oxidative degradation. HSCG may thus represent an easily accessible and sustainable alternative to currently available biomaterials with intrinsic antioxidant properties for biomedical, industrial, and technological applications
    corecore