52 research outputs found

    The Self-Organized de Sitter Universe

    Full text link
    We propose a theory of quantum gravity which formulates the quantum theory as a nonperturbative path integral, where each spacetime history appears with a weight given by the exponentiated Einstein-Hilbert action of the corresponding causal geometry. The path integral is diffeomorphism-invariant (only geometries appear) and background-independent. The theory can be investigated by computer simulations, which show that a de Sitter universe emerges on large scales. This emergence is of an entropic, self-organizing nature, with the weight of the Einstein-Hilbert action playing a minor role. Also the quantum fluctuations around this de Sitter universe can be studied quantitatively and remain small until one gets close to the Planck scale. The structures found to describe Planck-scale gravity are reminiscent of certain aspects of condensed-matter systems.Comment: Article unchanged, one line added to acknowledgmen

    A Lorentzian cure for Euclidean troubles

    Get PDF
    There is strong evidence coming from Lorentzian dynamical triangulations that the unboundedness of the gravitational action is no obstacle to the construction of a well-defined non-perturbative path integral. In a continuum approach, a similar suppression of the conformal divergence comes about as the result of a non-trivial path-integral measure.Comment: 3 page

    A non-perturbative Lorentzian path integral for gravity

    Full text link
    A well-defined regularized path integral for Lorentzian quantum gravity in three and four dimensions is constructed, given in terms of a sum over dynamically triangulated causal space-times. Each Lorentzian geometry and its associated action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time. For finite lattice volume, the associated transfer matrix is self-adjoint and bounded. The reflection positivity of the model ensures the existence of a well-defined Hamiltonian. The degenerate geometric phases found previously in dynamically triangulated Euclidean gravity are not present. The phase structure of the new Lorentzian quantum gravity model can be readily investigated by both analytic and numerical methods.Comment: 11 pages, LaTeX, improved discussion of reflection positivity, conclusions unchanged, references update

    Geometry of the quantum universe

    Get PDF
    A universe much like the (Euclidean) de Sitter space-time appears as background geometry in the causal dynamical triangulation (CDT) regularization of quantum gravity. We study the geometry of such universes which appear in the path integral as a function of the bare coupling constants of the theory.Comment: 19 pages, 7 figures. Typos corrected. Conclusions unchange

    Renormalization of 3d quantum gravity from matrix models

    Get PDF
    Lorentzian simplicial quantum gravity is a non-perturbatively defined theory of quantum gravity which predicts a positive cosmological constant. Since the approach is based on a sum over space-time histories, it is perturbatively non-renormalizable even in three dimensions. By mapping the three-dimensional theory to a two-matrix model with ABAB interaction we show that both the cosmological and the (perturbatively) non-renormalizable gravitational coupling constant undergo additive renormalizations consistent with canonical quantization.Comment: 14 pages, 3 figure

    The Nonperturbative Quantum de Sitter Universe

    Full text link
    The dynamical generation of a four-dimensional classical universe from nothing but fundamental quantum excitations at the Planck scale is a long-standing challenge to theoretical physicists. A candidate theory of quantum gravity which achieves this goal without invoking exotic ingredients or excessive fine-tuning is based on the nonperturbative and background-independent technique of Causal Dynamical Triangulations. We demonstrate in detail how in this approach a macroscopic de Sitter universe, accompanied by small quantum fluctuations, emerges from the full gravitational path integral, and how the effective action determining its dynamics can be reconstructed uniquely from Monte Carlo data. We also provide evidence that it may be possible to penetrate to the sub-Planckian regime, where the Planck length is large compared to the lattice spacing of the underlying regularization of geometry.Comment: Article unchanged. Line added in acknowledgmen

    Semiclassical Universe from First Principles

    Full text link
    Causal Dynamical Triangulations in four dimensions provide a background-independent definition of the sum over space-time geometries in nonperturbative quantum gravity. We show that the macroscopic four-dimensional world which emerges in the Euclidean sector of this theory is a bounce which satisfies a semiclassical equation. After integrating out all degrees of freedom except for a global scale factor, we obtain the ground state wave function of the universe as a function of this scale factor.Comment: 15 pages, 4 figure

    A new perspective on matter coupling in 2d quantum gravity

    Full text link
    We provide compelling evidence that a previously introduced model of non-perturbative 2d Lorentzian quantum gravity exhibits (two-dimensional) flat-space behaviour when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behaviour lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different, and much `smoother' critical behaviour.Comment: 24 pages, 7 figures (postscript

    CDT meets Horava-Lifshitz gravity

    Get PDF
    The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over space-time geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Ho\v{r}ava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Ho\v{r}ava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.Comment: 17 pages, 3 figures. Typos corrected, a few remarks added

    Emergence of a 4D World from Causal Quantum Gravity

    Full text link
    Causal Dynamical Triangulations in four dimensions provide a background-independent definition of the sum over geometries in nonperturbative quantum gravity, with a positive cosmological constant. We present evidence that a macroscopic four-dimensional world emerges from this theory dynamically.Comment: 11 pages, 3 figures; some short clarifying comments added; final version to appear in Phys. Rev. Let
    corecore