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Abstract

Lorentzian simplicial quantum gravity is a non-perturbatively defined theory of quantum gravity which predicts a positive
cosmological constant. Since the approach is based on a sum over space—time histories, it is perturbatively non-renormalizable
even in three dimensions. By mapping the three-dimensional theory to a two-matrix model with ABAB interaction we
show that both the cosmological and the (perturbatively) non-renormalizable gravitational coupling constant undergo additive
renormalizations consistent with canonical quantization.

0 2003 Published by Elsevier B.@pen access under CC BY license.

1. Introduction (Euclidean) gravity which reproduces quantum Li-
ouville theory in the limit of vanishing lattice spac-
ing [1-3]. Attempts to use similar combinatorial and
matrix-model techniques to extract information about
the non-perturbative structure of higher-dimensional
gravity have until recently met with little success.
However,if one performs the sum over geometries
over space-times of Lorentzian (as opposed to Rie-
mannian) signature, matrix-model methodsan be ap-
plied profitably in the non-perturbative quantization of
three-dimensional quantum gravity, as was first shown
in [4]. This line of investigation will be pursued further
in the present work.

Quantum gravity in three space-time dimensions
represents an interesting case in between dimensions
two and four. On the one hand, it contains no prop-
~ E-mail addresses: ambjorn@nbi.dk (J. Ambjgrn), agating gravitational degrees of freedom and can be
jurkiewi@thrisc.if.uj.edu.pl (J. Jurkiewicz), loll@phys.uu.nl reduced classically to a finite-dimensional physical
(R. Loll. phase space, both in a metric [5] and a connection

Defining a theory of quantum gravity as a suitable
sum over space—time histories is an appealing propo-
sition, since it can in principle be done in a com-
pletely background-independent and non-perturbative
way, with the structure of space—time being deter-
mined dynamically. In two space—-time dimensions,
such a program can be carried out successfully, al-
though in this case—because of the absence of prop-
agating gravitons—it may be more appropriate to
talk about a theory of “quantum geometry” rather
than one of quantum gravity. A well-known exam-
ple is the non-perturbative lattice formulation of 2d
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(Chern—Simons) formulation [6].Nevertheless, the
unreduced theory in terms of the metgg, appears

to be non-renormalizable when one tries to expand
around a fixed background geometry, just as in four di-
mensions. A definition of three-dimensional quantum
gravity via a “sum over geometries” therefore seems
to require a genuinely non-perturbative construction,
and in turn may shed light on the problem of non-
renormalizability of the full, four-dimensional theory,
where an explicit classical reduction is not available.

A non-perturbative definition of the sum over
geometries in three- and four-dimensional quantum
gravity was proposed in [7,8]. Unlike previous ap-
proaches, this method of “Lorentzian dynamical trian-
gulations” or “Lorentzian simplicial guantum gravity”
uses space—time geometries with physical, Lorentzian
signature, rather than positive-definite Riemannian
geometries as a fundamental input. Details on the
classes of geometries included in the path sum and on
earlier two-dimensional work that provided the mo-
tivation for this approach can be found in [8-10]. In
view of the recent observational progress in cosmol-
ogy (see [11] for a recent review) we should point out
that the physical, renormalized cosmological constant
in all of these models is necessarily positive.

In this Letter, we will present an explicit analysis
of the renormalization behaviour of the 3d Lorentzian
model, using a matrix-model formulation. This follows
previous work which analyzed the phase structure
of three-dimensional quantum gravity (for spherical
spatial topology) with the help of computer sim-
ulations [12-14], and a demonstration [4] that 3d
Lorentzian dynamical triangulations can be mapped
to graph configurations generated by the so-called
ABAB-matrix model [15].

Within continuum approaches to quantum grav-
ity there have also been attempts to prove the non-
perturbative renormalizability of gravity beyond di-
mension two, starting with an analysis of the theory
in 2+ ¢ dimensions [16—18]. More recently, an effec-
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2. Quantum gravity and the ABAB-matrix model

We start out with a brief description of the three-
dimensional Lorentzian simplicial space-times ap-
pearing in the sum over geometries, and the con-
struction of the partition function. In the standard
formulation of the model, the spatial hypersurfaces
of constant integer proper timeare given by two-
dimensional equilateral triangulations, each corre-
sponding to a unique piecewise flat 2d geometry.
These are the same geometries as appear in the con-
struction of 2d Euclidean quantum gravity, which is
known to be rather robust with regard to changes in
both the types of building blocks used and their glu-
ing rules [22]. We exploited this universality in [4]
by using 2d spatial geometries made up of equilateral
squares instead of triangles, and accordingly changing
the 3d building blocks from tetrahedra only to a set of
tetrahedra and pyramids.

Any two neighbouring spatial quadrangulations
at timesr and ¢ + 1 can be connected (in many
inequivalent ways) by a three-dimensional “sandwich”
geometry constructed from these building blocks, as
indicated in Fig. 1. The square base of a pyramid (or an
upside-down pyramid) coincides with a square of the
spatial slice at time (or r + 1), whereas the tetrahedral
building block is needed to connect between the two
types of pyramids within the same sandwich.

The amplitude for propagation from an initial quad-
rangulationg; to a final onegz in n proper-time steps
is obtained by summing over all geometrically distinct
ways of stacking: sandwich geometriest = 1 in be-
tweengi andg», in such a way that their 2d bound-
ary geometries match pairwise at integer times. The
weight of each geometry is given by a discretized ver-
sion of the Einstein action, here conveniently taken as
the Regge action for piecewise linear geometries [23].
After Wick-rotating, the partition function (or proper-
time propagator) can be written as

tive average action approach has produced evidence of

a non-trivial fixed point through an analysis of renor-
malization group flow equations [19-21].

1 Whether and to what extent the associatigentum theories
are related is still a contentious issue.

1
= e S5,
Cr

2

T,0T=g1Ug>

Z(k,A; g1, 82,n) = (1)

whereC is the order of the automorphism group of
the (generalized) triangulatidh, and the sum is over
all 7 with fixed boundarieg1 and g» of the kind
just described. The gravitational action, including a



J. Ambjern et al. / Physics Letters B 581 (2004) 255-262 257

CAY /7 y
- t+1
A ] /

] A

7
1.

1,4) (2,2)

Fig. 1. The fundamental building blocks of 3d Lorentzian quantum gravity interpolate between adjacent spatial slices of integantimes
t +1, and are labelled according to the numbe@rsi; ;1) of their vertices lying in the two slices.

cosmological term, is given by where the sum over the total space—time voluvhe
Nia+ Na1+ %sz has been pulled out, together with
the accompanying Boltzmann weight’¢’, and the

+A(N14(T)+N41(T)+—N22(7)>, ) remaining sum runs over all tnangulf’:\tlorﬁ/ of
2 fixed volume N, whose Boltzmann weights depend

whereN41(7) andN14(7) countthe numbers of pyra- 0N the curvature term multiplyinge. To leading
mids and upside-down pyramids aNgy(7") the num- order, the number of triangulations at fixed volume
ber of tetrahedra contained in a given triangulatian ~ grows exponentially with the volume, leading to the
The simplicity of the Regge action in our case stems asymptotic behaviour

from the fact that we use only two types of building

blocks, and contributions to volumes and curvatures ./ (N; g1, g2)&*<*", )

(in the form of deficit angles) occur only in terms of
a few basic units (see [4,8] for further details). The
simplicial action contains two dimensionless coupling
constantg andx, related to their continuum counter-
parts by

S(T) = —« (N1a(T) 4+ Nar(T) — N22(7))

for the second sum in (4), wherg(N; g1, g2) indi-
cates subleading terms M. It follows immediately
that for a givenk the regularized quantum gravity
model is only well defined (that is, its state sum con-
verges) forir > A.(x), corresponding to the region
a 4,1 a’A© above the critical line in the phase diagram of Fig. 2.
k=—~=|—-m+3cos" =), = o A .
47 GO ( 3) 2427 The critical line limits the region of convergence of
3 the patrtition functionZ. Takingx — A.(x) from in-
whereq is a geodesic lattice cut-off with the dimen-  side this region of convergence, the average value of
sion of length. It should be emphasized that these (suitable powers of v will diverge, corresponding
are “naive” relations between the dimensionless lattice t0 the limit of infinite lattice volume. Such a limit is
coupling constants and those of the continuum theory, clearly necessary if a continuum limit in any conven-
which will not be valid in the quantum theory. As we tional sense is to be achieved.
shall see in due course, additive renormalizations of ~ The continuum limit is obtained by scaling the lat-
both coupling constants will be needed in that case.  tice spacinga to zero while keeping the continuum

We can rewrite the partition function (1) as time T =n - a fixed (and therefore, increasing the
numbern of discrete time steps at a rat¢a). Dif-
Z(k, ; 81, 82, n) ferent, non-canonical scaling relations betw&eand
_ Zefuv Z ieK(Nl4(TN)+N41(TN)7N22(TN))’ a are in principle possiblé but the computer simula-
N 7 Cry
N (4)

3 In two-dimensional Euclidean quantum gravity the proper
_— time T scales anomalously and one has to kegx fixed [24].

2 Note that our cosmological constant® is defined as the By contrast, the scaling in two-dimensional Lorentzian simplicial
quantity that multiplies the volume terffid®x \/g. More conven- quantum gravity is canonical [9]. The relation between the two
tionally this term would be calledt @ /(87 G©). formulations is well understood [25].
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Fig. 2. The phase diagram of 3d Lorentzian quantum gravity in the
plane spanned by the bare inverse gravitational coupgliagd the
bare cosmological constaht together with the canonical approach
to a point(kg, Ac(kp)) on the critical line.

tions of [12] supported the presence of canonical scal-
ing in 3d quantum gravity. More precisely, we expect
to leading order i a scaling of the form

a
— =K

. ®)

as illustrated in Fig. 2. The approach to the critical line
is governed by the dimensionless combinat@®hA
which serves as the true, “observable” coupling con-
stant of 3d quantum gravity. The physics underlying
(6) is as follows: for a given value of the bare inverse
gravitational couplinge the average discrete space—
time volume(N) and its dimensionful counterpat)
behave like

N ~ 1
W) A= Ace(x)

— K0, aBA=nK) = Ae(i0),

a3

A—Ac(K) '

(7)
that is, the number of building blocks diverges in the
limit as A — A.(x). The physical requirement that the
continuum volume(V) remain finite and be propor-
tional to the inverseenormalized cosmological con-
stant ¥ A fixes the second scaling relation in (6). The
first relation is then determined by demanding that
G3 A be a dimensionless coupling constant of the the-
ory. This is precisely achieved by approaching a given
point(xo, A (ko)) on the critical curve according to the

(V) :=a3(N)
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Our construction raises the question of whether or
not physics depends on the choicexgf Indications
from the computer simulations of the model are that
the final result is independent of the valuexgfin the
range probed [12]. We will discuss in the following
how this question can be addressed analytically.

Letg, andg,+1 be two spatial quadrangulationsat
andr + 1, and(g,+1|f|g,> the transition amplitude or
proper-time propagator for the single time step from
tor+1. By definition, is the transfer matrix in the
sense of Euclidean lattice theory, and can be shown
to satisfy the usual properties of a transfer matrix [8].
The propagator forn time steps is obtained by an
fold iteration,

©)

Consider now the matrix model of two hermitian
M x M-matrices with partition function

Z(ay, a2, B)

=/dA dBe—Mtr(A2+32—‘”TlA4—‘”TZB4—ﬂABAB)_ 9)

Z(k, %; g1, g2, 1) = (g2 T" | g1).

In the context of the larg@4 expansion the free energy
F can be expressed as

MPF (a1, 02, B) = — 109 Z (a1, a2, B)

oo

=> M*PFy(a1,02,8),  (10)

h=0
wherey (h) = 2 — 2h is the Euler number of the quad-
rangulations dual to the four-valent graphs generated
by the matrix model. It was argued in [4] that the trans-
fer matrix for transitions between two spatial geome-
triesg, andg,+1 of genush is related toFj, (a1, a2, B)
according to

Fp(oa, a2, B)
e—Zt Ni—zp 41N 41
Nt,Niy1

2

8r+1(Nr41),81(Ny)

(gr41(Ner D) |T |2 (ND),. (11)

canonical scaling assignment (6). Note in passing that where N, and N, 1 denote the numbers of squares of

there is no way of obtaining a renormalized cosmo- the quadrangulations defining the spatial geometries
logical couplingA < 0, in agreement with our earlier at timest and ¢ 4+ 1, both of Euler numbely (k).

remarks. Also, we choose the approach to the criti- Pulling out the double-sum over discrete boundary
cal line such that the sign of the renormalized Newton volumes is convenient when studying the transfer
constant is standard and positive. matrix per se (see [9,26] for an analogous procedure in
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two space—time dimensions). The two dimensionless are only interested in the bulk coupling constants
boundary constants; and z;+1 can be viewed as A and G. This implies the symmetry; = o, as
cosmological coupling constants for the boundary well as the relation (12). From a technical point of
areas. For the purposes of the present Letter we will view it means that we have to deal only with the
choose particular values for andz; 11, in such a way symmetric ABAB-matrix model which, contrary to the
that the relations asymmetric model, has been solved explicitly [15].

a1 =ar=€""*, ﬁ:ef(%)‘“), (12)

hold between the matrix model coupling constants 3. Renormalization of 3d gravity

a;, B, and the bare gravitational and cosmological

coupling constants 1/&and A of three-dimensional The canonical approach (6) to a critical point
gravity. The relations (12) were derived previously («g, 10) on the critical line of the(x, A)-coupling

in [4], and we will use them in the next section to constant plane, Fig. 2, can be mapped via (12) to
translate the canonical approach (6) to the matrix the (8, «)-plane, as shown in Fig. 3. LeF(x, B)
model and draw conclusions about the renormalization denote the free energy of the symmetric ABAB-matrix
behaviour of the theory. model, and set; = a> = . It is convenient to change

The derivation of Eq. (12) requires some explana- variables from(g, «) to (s, r), where
tion. Generic matrix elements & in (11) grow ex-
ponentially with the total discrete three-volume= § = ﬁ r=. a2+ B2 (15)

N; + Niy1 + Nop/2, reflecting the fact that there are o

exponentially many three-geometries which interpo- The upper right-hand quadrant of thes-plane cor-
late between two given two-geometrigsand g;+1. responds ta, s € [0, oo]. Approaching a poings. (s),
This exponential growth is taken care of by the com- «.(s)) on the critical line from below along a line seg-
bined additive renormalizations of the cosmological = ment of constan, the coordinate will vary between
and gravitational constants, as discussed earlier in thisO and z(s) = /a.(s)2 + B.(s)2. According to [15],
section. F(a, B) or F(s,r) are analytic functions of their argu-

There is a completely analogous entropy for the mentsbelow the critical line. Moreover, approaching
boundary two-geometries, since the number of quad- the critical line along = const,F (r, s) has an expan-
rangulations of a given topology and a given discrete sion
two-volumeN; grows exponentially withv,. Just asin
the case of the three-volume, this exponential growth F(s,7) = F(s, 7c(s))
can be cancelled by aadditive renormalization, in = c1(5)8r + c2(s)8r% + 6.5/2(5)(”5/2
this case of the boundary cosmological constant 3
leading to a renormalized boundary cosmological con- +ea($)drm+ - (16)
stant multiplying a continuum area. Assume that the in the vicinity of the critical point(s, r.(s)), where
second sum in (11) grows like«€":*N+1) to leading 67 = r.(s) — r and where the coefficienis (s) are
order in the boundary two-volumes, and renormalize analytic functions ofs for both 0< s <1 and 1<
z; andz, 41 canonically according to s < oo. Around the special poirts, rc(s)) = (1, (1))

_ 2 _ 2 which separates the so-called A-phase<(1) from
G=ZetaZi, U4l TZeH A Zel (13) the B-phase s(> 1), the behaviour is more compli-
Defining the continuum ared, of a quadrangulation  cated than the one given in (16). As discussed in [4],
of N; squares by, := N;a?, the total area contribu-  phase A is the one relevant for canonical quantum
tion in the exponential in (11) becomes gravity and we will consider only coupling constant
(ze — 20)Ni + (ze — 2041) Nis1 variations inside phase A. N

The straight approach along= const to the critical
=—(ZiAr + ZiaAry), (14) line underlying (16) is not the one relevant for three-
as anticipated. In this Letter, we sBt = Z,,1 =0, dimensional quantum gravity, since it would translate
corresponding taz;; = z;41 = z. in (11), since we to a curve in the(k, 1)-plane which approaches the



260 J. Ambjern et al. / Physics Letters B 581 (2004) 255-262
A
o
(Bc:ac) (B{y 0:0)
3.0} E al(p)
E 5=1 E
BOGAG9)  Blkghe<0)

Fig. 3. The phase diagram of 3d Lorentzian quantum gravity in the plane spanned by the two coupling crestdat®f the matrix model,
together with the canonical approach to a p@f, «g) on the critical line. The end poir{B., «. = B.) of the diagonak = 1 separates phase

A from phase B.

corresponding critical poinco, Ag) non-tangentially.
In the notation of (6), this would implyx — g
Alk) — Ac(k), In contradiction with the scaling re-
lations (6). Stated differently, insisting on canonical
dimensions forG and A and a finite A, the gravi-
tational couplingG would have to go to infinity like
1/a? when the cut-off is removed.

One can of course repeat the analysis of [15] for
an arbitrary approach to the critical line. However,
rather than giving the technical details of this, let

us just state the final result for the case at hand.

We can approach a critical poiBo, «g) along any
curve (B(a), a(a)), where for convenience we have
identified the curve parameterwith the lattice cut-
off. For the canonical gravitational interpretation to
be valid, the scaling must follow (6), that is, both the
tangent and the curvature of the cury®(a), x(a))
must agree with those of the critical lig. (s), a. (s))

at the point(Bo, @o). The difference between the two
curves will only appear in their third-order derivatives,
as indicated by Fig. 3. In order to investigate the
analyticity properties of the free energy, we perform
a decomposition

F(a(a), B(a)) — F (a0, Bo)
= (F(a, ) — F(ac, B)
+ (F (e, Be) — F (a0, Bo)).

where, in the notation of Fig. 3, the approaching curve
(k(a), AMa)) translates int@B(a), a(a)), (B¢, a.) cOr-
responds to the pointk, A.(x)), and (Bo, o) to

17)

(k0, A0) on the critical line. To evaluate the first dif-
ference in (17) we can use

a—ae~ A+, BB~ Ad 4o, (18)

as well as the expansion (16). In the second difference
we can use
oac—apg~—a/G+---, pe—Bo~—a/G+---,
(19)
without any reference to the renormalized cosmolog-
ical constantA, defined by (6). This happens be-
cause bothisg, ap) and(8., a.) lie on the critical line,
whereasA is a measure of thdistance from the crit-
ical line. The important point is that—as long as we
stay in phase A—the differend®&(a., B.) — F («o, Bo)
is entirely analytic ine, — ag. We conclude that
the non-analytic behaviour of the free energy occurs
as a function of the cosmological coupling constant
alone. This non-analyticity ensures the existence of
an infinite-volume limit of 3d quantum gravity in the
sense of (7)The renormalized gravitational coupling
constant G playsno role in taking the continuumlimit,
which is entirely dictated by the non-analytic part of
F(a, B).

Let us discuss this behaviour in some more detail.
The free energy¥ («, B) of the matrix model serves
as thepartition function of the sum over sandwich
configurations of the three-dimensional Lorentzian
gravity model, as described above. Its continuum limit
is associated with a limit where the numbérof 3d
building blocks diverges, and — 0, while keeping
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the continuum three-volum& = Nqa® finite. This
large-N behaviour is related to the expansion

Fa,p)= Y.  N(Nua Naz; N2p)

N14,Na1,N22

x aNl4+N4l,8N22’ (20)

of F(a, B) into large powers ofx and 8, where

N (N14, Na1; No2) denotes the number of three-

geometries constructed fromiV14, N41, N22) build-

ing blocks between neighbouring spatial surfaces at

andt + 1 (see [4] for details). The non-analytic part

of F(«, B) is associated with simultaneous infinitely

large powers ofr and 8, which in turn is reflected in

a finite radius of convergence of the power expansion.
We will denote the non-analytic part of («, 8)

by Fsingulal, ), and it is only this part that should

be kept when discussing the continuum limit. Thus,

returning to the expansion (16), the first two terms

on the right-hand side are irrelevant to a potential

continuum limit dictated by the non-analytic term

(re —r)®2. Likewise, the tern¥ (a., Bc) — F (xo, Bo)

in Eq. (17) can be ignored when discussing continuum

physics. The tern¥ («, 8) — F (a., B.) in that relation

is similar to the quantity (16) which characterizes

the non-tangential approach to a critical point. The

continuum expression which survives is therefore

5/2
Fsingula A, G) ~ (Aas) / .

(21)
One would obtain the same expression in the 2d
(Euclidean) quantum gravity interpretation given in
[15], except that the power of the lattice cut-off would
be different. This is due to the tangential approach
to the critical point in the present case, reflecting the
different physical properties of the higher-dimensional
gravity theory.

One should keep in mind thaFsingular iS Not
identical with the partition function (4) for three-
dimensional quantum gravity for = 1, but rather is
a particular sum of matrix elements of the transfer ma-
trix between two adjacent constant proper-time slices,
which are separated by one lattice umitHowever,
as was also argued in [4], the study of this sum is
sufficient to exhibit the renormalization behaviour of
the bare gravitational and cosmological coupling con-
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stantst The only way in which the (perturbatively)
non-renormalizable gravitational coupling constant
makes an appearance in 3d Lorentzian quantum grav-
ity is by fixing the approach to the chosen critical point
ko, and thereby defining the dimensionless quantity

A= Ac(K)

= const= AG3.
(k — ko)®

(22)
Consequently, all observables we may think of calcu-
lating in this formulation will be of the form

O(A, G) = AY3F(AG3) (23)

after the continuum limit has been performed, where
“dim” refers to the mass dimension of the observ-
ableO.

4. Discussion

Three-dimensional simplicial Lorentzian quantum
gravity gives an explicit realization of the summation
over three-geometries. As in all quantum theories
with a cut-off, a prescription must be given of how
to remove the cut-off and recover the underlying
continuum quantum field theory; we did this by
specifying the renormalization of the bare coupling
constants of the theory. The relation of the model
to the ABAB-matrix model allowed us to give a
detailed discussion of a possible renormalization of
the gravitational and cosmological coupling constants,
consistent both with the existence of an infinite-
volume limit of the model and with a canonical scaling
of the renormalized coupling constants.

The bare gravitational and the bare cosmological
coupling constants turned out to be subject to additive
renormalizations. The perturbative non-renormalizabi-
lity of the gravitational coupling constant is resolved
in this non-perturbative approach by the fact that the
renormalized gravitational coupling constant only ap-
pears in the particular combination (22), defined by the
canonical approach to the critical line.

One way to obtain more detailed information about
the continuum limit would be by analyzing the full

4n an analogous analysis of two-dimensional simplicial
Lorentzian quantum gravity one also can deduce the renormaliza-
tion of the cosmological constant from the study of the same re-
stricted combination of matrix elements.
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transfer matrix, instead of the contracted version we

J. Ambjern et al. / Physics Letters B 581 (2004) 255-262

ported by “MaPhySto”, the Center of Mathemati-

have studied in the present work. From the transfer cal Physics and Stochastics, financed by the National

matrix one can extract theontinuum proper-time
HamiltonianH by virtue of the relation

A~ A

T=e~]_qH. (24)

This can be done explicitly in both two-dimensional
Lorentzian and Euclidean simplicial guantum gravity,
where the Hamiltonian is a differential operator in a
single variable, the one-volume of the spatial universe.
Three-dimensional quantum gravity is more involved

since the spatial geometries at a fixed time constitute

an infinite-dimensional field space, spanned by the
conformal factor and a finite number of Teichmuiller
parameters. However, from our knowledge of the
classical, canonical structure of the theory we do not
expect the conformal part of the geometry to play a
dynamical role. From this point of view—in addition

to any Teichmuller parameters—at most the constant

mode of the conformal factor (equivalently, the two-
dimensional total area) of the spatial geometry should
appear in the Hamiltonian.

We know that at the discretized level there are
transitions between any pair of two-geometries of
the same topology, that is, all matrix elementsTof
are non-vanishing. It would be very interesting to

understand in detail how the matrix elements lose their

sensitivity to anything but the Teichmiller parameters
and the total area in the continuum limit. Although
the ABAB-matrix model cannot be used to address

the issue of how the dependence of the transfer

matrix on the conformal factor drops out, solving its
asymmetric version (withay # a2) would determine

Danish Research Foundation.
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