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A quantum universe with the global shape of a (Euclidean) de Sitter spacetime appears as dynamically
generated background geometry in the causal dynamical triangulation (CDT) regularisation of quantum
gravity. We investigate the micro- and macro-geometry of this universe, using geodesic shell decomposi-
tions of spacetime. More specifically, we focus on evidence of fractality and global anisotropy, and on
how they depend on the bare coupling constants of the theory.
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1. Introduction

The attempt to quantise gravity using conventional quantum
field theory has been gaining considerable momentum due to
the progress in using renormalisation group techniques [1], the
understanding that one may consider an enlarged class of the-
ories like the “Lifshitz gravity” suggested by P. Hořava [2], and
by the success of non-perturbative lattice gravity theory in terms
of Causal Dynamical Triangulations (CDT) in reproducing some of
the infrared features of our universe from first principles [3–7]
(see also [8] for recent reviews and [9] for a non-technical ac-
count).

In this Letter we will define and measure a number of “quan-
tum observables” to quantify further the geometric properties of
the quantum de Sitter universe to emerge from non-perturbative
lattice simulations of quantum gravity in terms of causal dynami-
cal triangulations. Building on previous results presented in [4,6,7],
the quantities we will consider characterise the fractality of the
spacetime as a whole and of certain hypersurfaces inside it, as well
as potential global anisotropies between the time and space direc-
tions of the quantum universe.
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2. The macroscopic S4-universe

In practise, the non-perturbative and background-independent
quantisation of gravity in CDT proceeds via Monte Carlo simu-
lations, which generate a sequence of piecewise flat spacetime
geometries. We observe the emergence of a background geom-
etry, with well-defined quantum fluctuations around it, whose
large-scale shape has been matched with great accuracy to that
of a “round S4”, a (Euclidean) de Sitter universe, see [7] for de-
tails.

This is a result which is (a) non-trivial, and (b) not univer-
sally true. It is non-trivial because the four-sphere is only a saddle
point solution to the Euclidean equations and there is no obvi-
ous reason why it should dominate the path integral, in particular,
since the action is unbounded from below. This means that the
appearance of S4 is due to a subtle interplay between the en-
tropy of configurations (the path integral measure) and the bare
action. This is also the reason why the result is not universally
true: only in a certain range of bare coupling constants will the
S4-like background dominate. It is the geometries in this so-called
“phase C” [4] whose properties we will investigate presently. For
other values of the bare coupling constants one finds other phases
(called A and B in [4]), and phase transitions between them. We
note in passing that the phase diagram of CDT quantum grav-
ity bears an intriguing resemblance to that of Lifshitz gravity, as
discussed in some detail in [10], and is the subject of ongoing re-
search.
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Fig. 1. The volume profile 〈V 4(t)〉 for decreasing values of the asymmetry � = 0.6,
0.25 and 0.1, with total four-volume kept constant. The profile narrows as � de-
creases.

The Euclidean Einstein action and its implementation on piece-
wise linear geometries are given by

S E = 1

16π2G

∫ √
g(−R + 2Λ)

→ −(κ0 + 6�)N0 + κ4
(
N(4,1)

4 + N(3,2)
4

)

+ �
(
2N(4,1)

4 + N(3,2)
4

)
, (1)

where N0 is the number of vertices, N(4,1)
4 the number of four-

simplices with four vertices in one spatial slice and one vertex
in one of the adjacent spatial slices, and N(3,2)

4 the number of
four-simplices with three vertices in one spatial slice and two ver-
tices in a neighbouring slice. The coupling κ0 is proportional to
the inverse bare gravitational coupling constant, while κ4 is lin-
early related to the bare cosmological coupling constant. Finally, �

is an asymmetry parameter related to the fact that we allow for a
finite relative scaling between the length of space- and time-like
links.

Since for simulation-technical reasons it is preferable to keep
the total four-volume fixed during the Monte Carlo simulation,
κ4 effectively does not appear as a coupling constant. Instead, one
can perform simulations for different four-volumes. This leaves
us with two bare coupling constants, κ0 and �. We start out
with (κ0,�) = (2.2,0.6), a value firmly placed in phase C , at
which most of our previous computer simulations were per-
formed.

In this Letter we are mainly interested in the changes that oc-
cur when one decreases �. The reason is that in this manner one
approaches the phase transition between phases C and B, which is
a potential candidate for a second-order transition line. To give a
first indication of what happens, we have measured the change in
shape, by which we shall mean the average volume profile 〈V 4(t)〉
as a function of the lattice proper time t , where V 4(t) denotes
the (discrete) four-volume (= number of four-simplices) located in
the spacetime slab between times t and t +1. Fig. 1 illustrates how
the universe’s extension in the time direction, measured in units of
discrete lattice steps, becomes shorter when we decrease � from
0.6 to 0.1. Our main aim in the present work is to describe the ge-
ometry of CDT’s quantum universe in greater quantitative detail,
both at the generic point and when changing �.
3. Exploring the universe by shell decomposition

To study the invariant properties of geometry we move along
geodesics, which in the Euclideanized, piecewise linear context we
define as the shortest piecewise straight paths between any two
centres of four-simplices, where each path consists of a sequence
of straight segments connecting the centres of neighbouring four-
simplices. The length of a path is simply taken as the number of
“hops” between adjacent four-simplices.

The way we will make use of geodesics in the present Letter is
by propagating either from a point or a given hypersurface in dis-
crete geodesic steps of unit length to consecutive geodesic shells,
foliating part or all of the universe. We collect certain data asso-
ciated with such shell decompositions, from which we reconstruct
the following geometric information about the quantum universe:
(i) its fractal structure, (ii) its average volume distribution as func-
tion of time and spatial distance, and (iii) an estimate of its global
shape.

Let us describe some key elements of our measurement pro-
cess. For any fixed, given universe configuration generated by the
Monte Carlo simulation, we first locate its (non-unique) “centre”,
defined as any four-simplex lying in the spacetime slab with max-
imal volume V 4(t), whose time label we will denote by t0. Picking
an arbitrary four-simplex in this maximal slab, we move outwards
from this centre in spherical shells (in a four-dimensional sense),
advancing in geodesic steps of length 1. We record various pieces
of information on the way, most prominently, the four-volume
V 4(t, r) in the shell of four-simplices located a distance of r steps
away from the centre and at the same time located in time slab t .
Thus V 4(t, r) constitutes a fraction of both V 4(t) and of Ṽ 4(r),
which by definition is the four-volume of the entire shell (i.e. the
number of four-simplices contained in it) at distance r. Summaris-
ing the situation, we have the relations

V 4(t) =
∑

r

V 4(t, r), Ṽ 4(r) =
∑

t

V 4(t, r),

V 4 =
∑

t

V 4(t) ≡
∑

r

Ṽ 4(r) (2)

for the total four-volume V 4. In order to be able to average over
many configurations we redefine our time labelling such that t0
always corresponds to time zero. For investigating the fractal na-
ture of an individual spacetime configuration (its “branchedness”
and possible associated self-similarity), we also record the connec-
tivity of the shell at distance r, where two simplices in the shell
at distance r are called connected if one can find a path con-
necting them using simplices only from shells with some larger
distance r′ � r.

4. The results

4.1. The fractal structure

We have measured the fractal structure of individual path-
integral histories for a number of different values of �, starting at
� = 0.6 and ending at � = 0.06 (with κ0 = 2.2 understood), with
Fig. 2 giving a representative sample of data. The figures should
be read as follows: the top node of each of the three tree graphs
represents the chosen “centre of the universe”, and distance from
the centre increases as one moves down or sideways in the graph.
Each node represents a connected component of a shell. A line
connecting two nodes indicates that there is a four-simplex in one
of the connected components which is a direct neighbour of a
four-simplex in a connected component in a neighbouring shell.
By construction, such a graph will be a tree graph. One might call
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Fig. 2. Tree graphs illustrating the connectedness of radial shells, starting from a
central four-simplex of a spacetime configuration (top node of graph) and moving
outward in discrete, concentric spherical shells (corresponding to going down or
sideways in the tree graph). From left to right, measurements taken at � = 0.06,
0.25 and 0.6.

it a diffusion tree, since one essentially follows the front of the
simplest diffusion process one can study on a given configuration.
The size of a node is a measure of the number of four-simplices in
the associated connected component of the shell. To optimise the
graphical presentation, the radius ρ of the node has been chosen
as ρ ∝ V 1/10

4 , and only shells (and sub-shells) with more than 40
simplices have been included.

The qualitative features of the graphs shown in Fig. 2 are
generic and there is little sign of any non-trivial branching struc-
ture. One typically finds one sequence of connected shells which
dominates (some small disconnected components are created but
end almost immediately), which at some point bifurcates into two.
The figure also illustrates that this bifurcation becomes more pro-
nounced for larger �. The interpretation of this phenomenon in
terms of the overall shape of the quantum universe should be
clear: for large � we have a four-sphere which has been stretched
along the time direction. The analogue in two dimensions lower
would be that of a round two-sphere stretched along one of its
directions to create a prolate spheroid (the surface of revolution
obtained by rotating an ellipse about its major axis). Starting a
diffusion process from any point along the equator along the non-
stretched direction, the diffusion front will propagate in concentric
circles until it meets itself at the antipode of the starting point,
where it will then bifurcate and move in opposite directions to-
ward the pointed ends of the spheroid. Returning to the case of
four dimensions, the spheroid becomes more spherical with de-
creasing �, and consequently the bifurcation becomes less pro-
nounced (and even disappears for the lowest value of �), as we
have been observing. Although our discussion of fractal behaviour
above is of a qualitative nature, it is reasonably straightforward
to construct related quantum observables whose expectation value
on the ensemble of all spacetimes is well defined and can be mea-
sured quantitatively. An example of this is the “sphericity” of the
universe, which will be introduced in Section 4.3 below.

4.2. The volume of shells

The picture of a diffusion process on a spheroid is corrobo-
rated by measurements of V 4(t, r) for various values of �. Unlike
in the previous section, the data collected do not refer to a sin-
gle configuration, but to a combined average over configurations
and initial points (where for each given spacetime configuration,
we selected 100 different starting points in the maximal time slab
and repeated the diffusion process).

In Fig. 3 we show contour plots of the distribution V 4(t, r) for
various �, which for large � assume a characteristic “V”-shape in
the t–r-plane. They indicate that the diffusion front splits into two
after a certain distance rbif, called the bifurcation distance, which
should be identified with half the length of the equator of the
(unstretched, round) three-sphere at time t0. As � decreases the
V-shape diminishes, with the obvious interpretation that the shape
of the spheroid becomes more and more spherical, with approxi-
mately equal extension in spatial and time directions.

Additional evidence for this geometric interpretation comes
from starting the diffusion instead at one of the tips of the
spheroid. In this case one never observes any V-shape, and the
front of diffusion is not very different from the proper-time slicing
which was used to define the original global time in the computer
simulations.

A related study has recently been performed in three-dimen-
sional CDT,1 using the full diffusion equation [13] and comparing
it with the diffusion on an elongated sphere. The conclusion was
that from the point of view of long-distance diffusion one can in-
deed view the quantum geometry in the three-dimensional case as
that of a stretched sphere with small superimposed quantum fluc-
tuations. In the four-dimensional case we have one more coupling
constant at our disposal, the asymmetry factor �, which seemingly
allows us to monitor the shape of the universe when described
in terms of lattice spacings. However, the conclusion that the real
quantum universe changes shape under a change in � may be pre-
mature: as we will explain further in Section 6, when discussing
the situation in terms of actual physical distances (instead of just
lattice units), the shape of the universe may actually change very
little or even not at all.

4.3. The function Ṽ 4(r) and sphericity

Next we turn to the distribution of the number Ṽ 4(r) of four-
simplices in a shell at distance r from a given centre of the uni-
verse, as defined in Section 3 above. Fig. 4 shows Ṽ 4(r) for various
values of �. For the smallest values of � the peak is nicely sym-
metric and well approximated by A sin3(r/B), in agreement with
earlier studies of the curve V 4(t). The hypersurfaces of constant ra-
dius r are of course completely different from those of constant t ,
but nevertheless it turns out that Ṽ 4(r) agrees with V 4(t) up to
a rescaling of the constants. For larger values of � the situation
is different in that Ṽ 4(r) has a large-r tail, which cannot be fitted
to A sin3(r/B). This behaviour is again consistent with universes
of the form of prolate spheroids: for a genuinely spherical con-
figuration, Ṽ 4(r) would vanish for radii r larger than the distance
between antipodal points. By contrast, for elongated configurations
the diffusion front bifurcates when the antipodal point is reached,
and continues further towards the tips of the spheroid.

Let us try to quantify how spherical our averaged configuration
is by defining the sphericity s by

s :=
∑rbif

r=0 Ṽ 4(r)∑rmax
r=0 Ṽ 4(r)

. (3)

In agreement with our earlier characterisation, rbif is defined oper-
ationally as the largest radius r for which V 4(t0, r) is larger than

1 For a definition of Causal Dynamical Triangulations in three dimensions, see [11,
12].
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Fig. 3. Contour plots of the distribution V 4(t, r), as function of the spacetime slab t (horizontal axes) and the distance r travelled by the diffusion front (vertical axes) from
its initial point. The processes are centred in slice t0 = 20, and the plots are taken at � = 0.06, 0.25 and 0.6 (left to right).
Fig. 4. Average radial volume distribution Ṽ 4(r) as function of the distance r from a
“centre of the universe”.

some cut off, here taken to be 4 (recall that t0 marks the spacetime
slice of maximal four-volume). Similarly, rmax is the largest dis-
tance r for which Ṽ 4(r) is larger than the cut off. This implies that
the denominator of the quotient (3) is an overall normalisation,
given by the total four-volume minus the volume of the “stalk”
(where the spatial universe only persists because we do not allow
it to shrink to zero volume). Fig. 5 shows how s, averaged over
both configurations and initial points, depends on �. From com-
paring with the diffusion trees one would expect s to be close to 1
for the smallest values of � considered here. This is indeed what
we find confirmed here. Of course, s = 1 is exactly the value which
we would also obtain for a round sphere in the continuum.

5. The fractal structure of spatial slices

When studying the connected components of a shell at distance
r above, the connectivity was defined in a four-dimensional sense,
in that the connecting paths were allowed to lie not only in the
shell r, but also in shells with r′ > r. The resulting tree structure
did not exhibit any fractality. This picture changes drastically when
we confine ourselves to a shell at fixed r and define connectiv-
ity with respect to paths that lie entirely within that shell. What
we have found is that the structure of the shells at fixed radius r
is quantitatively similar to both that of the four-dimensional time
slabs labelled by time t , as well as that of the three-dimensional
hypersurfaces at constant time t , made exclusively from spatial
tetrahedra. Since the spatial hypersurfaces at fixed time t are the
Fig. 5. Sphericity s of the quantum universe for different values of the asymmetry
parameter �.

easiest to handle numerically, we have used them to collect our
data set. What we would like to emphasise is that the structure re-
ported below is equally valid for any of the hypersurfaces or slabs
appearing above, and presumably reflects the properties of generic
(reasonably chosen) hypersurfaces.

A hypersurface of this kind is a three-dimensional triangula-
tion, more precisely, a piecewise linear manifold of topology S3.
The mismatch between the measured values of its spectral dimen-
sion, dS ≈ 1.5, and its Hausdorff dimension, dH ≈ 3, is an indicator
of the non-classical, fractal nature of these slices (for definitions
and results, see [4]). We will now quantify their fractality in a
more direct way, with the tree structure defined in terms of so-
called “minimal necks” [14,15]. Such a minimal neck consists of
four neighbouring triangles which are glued together in such a way
as to form a minimal representation of a topological two-sphere,
or, equivalently, the surface of a solid tetrahedron, but without the
interior of the tetrahedron forming part of the three-dimensional
triangulation.

Cutting a triangulation along a minimal neck will separate it
into two disconnected parts which can both be made into trian-
gulations of S3 by closing off the two boundaries, each given by a
copy of the minimal neck, with two tetrahedral building blocks.2

2 The analogous process in two instead of three dimensions, where the minimal
neck consists of three edges forming the boundary of a triangle, is somewhat easier
to visualise.
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Fig. 6. The fractal structure of two neighbouring hypersurfaces at times t and t + 1, using the tree structure induced by minimal necks.
Cutting along each minimal neck in the triangulation and repeat-
ing the process leaves us with a number of S3-components. Each
of these we represent by a graph vertex, which is then reconnected
by a graph edge to each vertex representing a S3-component that
was originally connected to the first one by a minimal neck. By
this “minimal-neck surgery” we can associate a unique tree graph
to any three-dimensional triangulation. Fig. 6 illustrates a typi-
cal tree structure associated with a given triangulated hypersur-
face.

The resulting tree structure reflects a rough three-dimensional
distance hierarchy, but does this persist in a four-dimensional
sense once we re-allow for paths which can leave the hypersurface,
and may lead to short-cuts between points on it? To some extent
it does, at least in a statistical sense. Namely, we have checked
that typical distances between pairs of points are not drastically al-
tered when considering the full, four-dimensional embedding. The
observed fractal structure is therefore not entirely an artifact of
defining a hypersurface in a generic spacetime configuration ap-
pearing in the path integral, which of course is subject to wild
ultraviolet fluctuations.

6. Discussion

The CDT prescription for constructing a theory of quantum
gravity is extremely simple, namely, as the path integral over
causal spacetime geometries with a global time foliation. In or-
der to perform this summation explicitly, one introduces a grid of
piecewise linear geometries, in much the same way as when defin-
ing the path integral in quantum mechanics. The action used is the
Einstein–Hilbert action in the form of the Regge action for piece-
wise linear geometries. Next, one rotates each of the Lorentzian
geometries to Euclidean signature, and performs the path inte-
gral with the help of Monte Carlo simulations, thus restricting
one to stay in the Euclidean sector. The key outcome is that in
a certain range of bare coupling constants (“phase C”) one ob-
serves a quantum universe which can be described as an emergent
four-dimensional cosmological “background” geometry with super-
imposed quantum fluctuations, and a highly non-classical short-
distance behaviour, as reflected in an anomalous spectral dimen-
sion, ds ≈ 2, and some evidence of fractality.

What is somewhat unusual compared to the standard lattice
scenario is that the non-trivial infrared behaviour is observed for a
whole range of coupling constants. The purpose of this Letter was
to have a closer look at the geometric properties of the quantum
universe in this phase C. In previous work we have shown that for
a specific choice of bare coupling constants in phase C (generic in
the sense of not being close to any phase transitions) one can by a
finite, global rescaling of the continuum cosmological proper time
map the expectation value of the volume profile of the quantum
universe to that of a round four-sphere, that is, Euclidean de Sitter
space. Does this picture change when we change the values of the
bare coupling constants?

In this Letter, we have left the bare inverse gravitational con-
stant unchanged and varied the coupling constant � between the
generic value � = 0.6 used previously and (almost) zero. We can-
not go all the way to zero because there is a phase transition just
before we reach zero, and close to it our current Monte Carlo sam-
pling becomes ineffective On the face of it, most of our results
show a clear �-dependence, as illustrated by Figs. 1–5. Only for
small �, corresponding to α ≈ 1 are our results compatible with a
truly spherical universe. Is this in contradiction with earlier claims
that we observe a de Sitter universe throughout phase C? Not nec-
essarily: as we have already alluded to in Section 4.2, it may be
that continuum physics is invariant under a variation in �, at least as
long as we stay away from the phase transition.

Let us present some evidence that our current data is not in
disagreement with such a hypothesis. The key point is that �,
which appears linearly in the action (1) can be viewed as a choice
of asymmetry between space and time [4]. A more direct mea-
sure of this asymmetry is given by the parameter α, introduced
originally in [16,12] as the proportionality factor between the
(squared) length of time- and spacelike edges, at and as , accord-
ing to a2

t = αa2
s . Now, considering the relation between α and �,

plotted in Fig. 7, one observes that a decrease in � is associated
with an increase in α. In other words, a lattice unit in time di-
rection corresponds to an ever larger physical distance as � → 0.
When taking this effect into account — as one should — when con-
sidering the shape of the universe or the distribution V 4(t, r), say,
one sees that it could potentially compensate for the differences
for different � which we observed when expressing our results
in terms of fixed lattice units. This would imply that the “true”
physics is unchanged under variation of either α or � throughout
phase C. The region where true sphericity is realised appears to be
for α ≈ 1. This also happens to be the region where the spatial di-



J. Ambjørn et al. / Physics Letters B 690 (2010) 420–426 425
Fig. 7. The asymmetry factor α, plotted as a function of �, for κ0 = 2.2. The hor-
izontal line is α = 7/12, the lowest kinematically allowed value of α, where the
(3, 2)-simplices degenerate because of a saturation of a triangle inequality [12].

ameter and the time extent, when measured in terms of discrete
lattice units, are approximately equal.

It is difficult to convert this argument into a more quantita-
tive statement about the shape of the spheroid, say, because we
do not at this stage have an independent way (other than fitting
the quantum universe to the round four-sphere) of establishing the
relative scaling between time and spatial distances in the contin-
uum theory. The regularised theory is ambiguous when it comes
to defining something like the “timelike distance between spatial
slices”, not least because of the singular nature of the piecewise
flat geometries. The easiest definition is to take it to be unity in
terms of discrete lattice units, as is usually done. Alternatively, one
could again take the local, piecewise flat geometry literally and
work out the true geodesic distance of a point x in the spatial slice
at time t + 1 to the previous slice at time t (which would lead one
to conclude that as a result of the specific geometry of the sim-
plices and how they are glued together, this distance can vary be-
tween c1as and c2as , where c1, c2 are constants which themselves
depend on α). Of course, this distance would also on average de-
crease when decreasing α, but would be distinct from the “step
distance” at the cut-off scale. Nevertheless, one’s expectation would
be that different definitions of discrete distance will give rise to
equivalent notions of “continuum distance”, which differ at most
by a global rescaling. However, it was exactly this relative global
scale we were trying to determine above.

In summary, our hypothesis that continuum physics and geom-
etry do not change as the asymmetry parameter is changed con-
tinuously is not contradicted by present measurements, but further
corroboration will have to await the study of finer-grained observ-
ables, which can distinguish spheroids from true spheres. This also
points to a potential flaw in the way we have defined some of our
“observables”, like those depicted in Figs. 1–5. In their definition,
we simply treated time and space directions on an equal footing
(for example, when advancing shells in unit steps from a given
point). This can create a spurious �-dependence. For example, if
our hypothesis is correct and the universe is a round four-sphere,
no matter where we are in phase C, one would say that graphs
like those for � = 0.25 and � = 0.6 in Fig. 2 cannot be counted as
evidence for the presence of global anisotropy.

Once we cross the phase transition line and enter phase B,
the situation changes dramatically and there remains only a sin-
gle time slice which has a spatial three-volume different from
the minimal cut-off value — four-dimensional spacetime has com-
pletely disappeared! Presently it is unclear whether this happens
abruptly (corresponding to a first-order transition) or merely fast
but smoothly (corresponding to a second-order transition). If the
latter was the case, it would probably be inconsistent to maintain
that the physical shape remained unchanged all the way to the
transition line. On the other hand, other scenarios may then sug-
gest themselves, involving perhaps an asymmetric scaling of space
and time along the lines envisaged in Hořava–Lifshitz gravity, see
also [10].

Lastly, to return to the other one of our main themes, that of
fractality, our more detailed investigation finds little or no evi-
dence of fractality when looking at a shell decomposition of space-
time. By contrast, when performing a shell decomposition within a
given hypersurface (a shell or slice of constant r or t), we have
confirmed earlier findings of a fractal structure [4] for hypersur-
faces of constant proper time and have verified that they are also
present for more general types of shells. We have gone one step
further and found (at least qualitative) evidence that the fractal
structure of the hypersurface is propagated to a neighbouring one,
which means that it is not entirely an artifact confined to a single,
isolated shell. We do not yet understand the ramifications of this
result for the short-scale physics of the quantum universe. Most
likely it is related to the anomalous spectral dimension observed in
[17] and obtained in both the asymptotic safety scenario [18] and
Hořava–Lifshitz gravity [19]. It would be interesting if this could
be understood in more detail.
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