38 research outputs found

    Variability of Urinary Concentrations of Bisphenol A in Spot Samples, First Morning Voids, and 24-Hour Collections

    Get PDF
    Background: Human exposure to bisphenol A (BPA) is widespread. After exposure, BPA is rapidly metabolized and eliminated in urine. Therefore, there is considerable within-person and between-person variability of BPA concentrations in spot urine samples. However, no information exists on the within-day variability of urinary BPA concentrations

    Evidence of American Martens Populating the Turtle Mountains of North Dakota

    Get PDF
    American martens (Martes americana) were native to northeastern North Dakota but were considered extirpated by the early 1800s. Although there is no historic evidence of martens occurring beyond the northeast, forested habitat potentially suitable for martens exists in the Turtle Mountains region of northcentral North Dakota and southwestern Manitoba. From 1989– 1991, the Turtle Mountain Trappers Association translocated 59 martens into the Canadian portion of the Turtle Mountains. During summer 2007, we used covered track-plates and/or remotely-triggered cameras placed at 123 survey sites distributed among 41 1-km2 grid cells (a GIS-generated layer imposed on electronic maps of the study region) to determine if martens occupied the Turtle Mountains in North Dakota. Martens were detected at 26 (21%) sites, representing 20 of the 41 sample cells (49%) widely dispersed throughout the study area. Our study provided the first evidence of martens occurring in North Dakota since the early 1800s

    Parabens as Urinary Biomarkers of Exposure in Humans

    Get PDF
    BACKGROUND: Parabens appear frequently as antimicrobial preservatives in cosmetic products, in pharmaceuticals, and in food and beverage processing. In vivo and in vitro studies have revealed weak estrogenic activity of some parabens. Widespread use has raised concerns about the potential human health risks associated with paraben exposure. OBJECTIVES: Assessing human exposure to parabens usually involves measuring in urine the conjugated or free species of parabens or their metabolites. In animals, parabens are mostly hydrolyzed to p-hydroxybenzoic acid and excreted in the urine as conjugates. Still, monitoring urinary concentrations of p-hydroxybenzoic acid is not necessarily the best way to assess exposure to parabens. p-Hydroxybenzoic acid is a nonspecific biomarker, and the varying estrogenic bioactivities of parabens require specific biomarkers. Therefore, we evaluated the use of free and conjugated parent parabens as new biomarkers for human exposure to these compounds. RESULTS: We measured the urinary concentrations of methyl, ethyl, n-propyl, butyl (n- and iso-), and benzyl parabens in a demographically diverse group of 100 anonymous adults. We detected methyl and n-propyl parabens at the highest median concentrations (43.9 ng/mL and 9.05 ng/mL, respectively) in nearly all (> 96%) of the samples. We also detected other parabens in more than half of the samples (ethyl, 58%; butyl, 69%). Most important, however, we found that parabens in urine appear predominantly in their conjugated forms. CONCLUSIONS: The results, demonstrating the presence of urinary conjugates of parabens in humans, suggest that such conjugated parabens could be used as exposure biomarkers. Additionally, the fact that conjugates appear to be the main urinary products of parabens may be important for risk assessment

    Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing

    Get PDF
    PURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs

    Multisite evaluation of institutional processes and implementation determinants for pharmacogenetic testing to guide antidepressant therapy.

    Get PDF
    There is growing interest in utilizing pharmacogenetic (PGx) testing to guide antidepressant use, but there is lack of clarity on how to implement testing into clinical practice. We administered two surveys at 17 sites that had implemented or were in the process of implementing PGx testing for antidepressants. Survey 1 collected data on the process and logistics of testing. Survey 2 asked sites to rank the importance of Consolidated Framework for Implementation Research (CFIR) constructs using best-worst scaling choice experiments. Of the 17 sites, 13 had implemented testing and four were in the planning stage. Thirteen offered testing in the outpatient setting, and nine in both outpatient/inpatient settings. PGx tests were mainly ordered by psychiatry (92%) and primary care (69%) providers. CYP2C19 and CYP2D6 were the most commonly tested genes. The justification for antidepressants selected for PGx guidance was based on Clinical Pharmacogenetics Implementation Consortium guidelines (94%) and US Food and Drug Administration (FDA; 75.6%) guidance. Both institutional (53%) and commercial laboratories (53%) were used for testing. Sites varied on the methods for returning results to providers and patients. Sites were consistent in ranking CFIR constructs and identified patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and the identification of champions as most important for implementation. Sites deployed similar implementation strategies and measured similar outcomes. The process of implementing PGx testing to guide antidepressant therapy varied across sites, but key drivers for successful implementation were similar and may help guide other institutions interested in providing PGx-guided pharmacotherapy for antidepressant management

    Behavioral and molecular genetics of reading-related AM and FM detection thresholds

    Get PDF
    Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h2 = 0.20) and FM (h2 = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading

    Qualitative data sharing and re-use for socio-environmental systems research: A synthesis of opportunities, challenges, resources and approaches

    Get PDF
    Researchers in many disciplines, both social and natural sciences, have a long history of collecting and analyzing qualitative data to answer questions that have many dimensions, to interpret other research findings, and to characterize processes that are not easily quantified. Qualitative data is increasingly being used in socio-environmental systems research and related interdisciplinary efforts to address complex sustainability challenges. There are many scientific, descriptive and material benefits to be gained from sharing and re-using qualitative data, some of which reflect the broader push toward open science, and some of which are unique to qualitative research traditions. However, although open data availability is increasingly becoming an expectation in many fields and methodological approaches that work on socio-environmental topics, there remain many challenges associated the sharing and re-use of qualitative data in particular. This white paper discusses opportunities, challenges, resources and approaches for qualitative data sharing and re-use for socio-environmental research. The content and findings of the paper are a synthesis and extension of discussions that began during a workshop funded by the National Socio-Environmental Synthesis Center (SESYNC) and held at the Center Feb. 28-March 2, 2017. The structure of the paper reflects the starting point for the workshop, which focused on opportunities, challenges and resources for qualitative data sharing, and presents as well the workshop outputs focused on developing a novel approach to qualitative data sharing considerations and creating recommendations for how a variety of actors can further support and facilitate qualitative data sharing and re-use. The white paper is organized into five sections to address the following objectives: (1) Define qualitative data and discuss the benefits of sharing it along with its role in socio-environmental synthesis; (2) Review the practical, epistemological, and ethical challenges regarding sharing such data; (3) Identify the landscape of resources available for sharing qualitative data including repositories and communities of practice (4) Develop a novel framework for identifying levels of processing and access to qualitative data; and (5) Suggest roles and responsibilities for key actors in the research ecosystem that can improve the longevity and use of qualitative data in the future.This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1052875

    Prescribing Prevalence of Medications With Potential Genotype-Guided Dosing in Pediatric Patients

    Get PDF
    Importance: Genotype-guided prescribing in pediatrics could prevent adverse drug reactions and improve therapeutic response. Clinical pharmacogenetic implementation guidelines are available for many medications commonly prescribed to children. Frequencies of medication prescription and actionable genotypes (genotypes where a prescribing change may be indicated) inform the potential value of pharmacogenetic implementation. Objective: To assess potential opportunities for genotype-guided prescribing in pediatric populations among multiple health systems by examining the prevalence of prescriptions for each drug with the highest level of evidence (Clinical Pharmacogenetics Implementation Consortium level A) and estimating the prevalence of potential actionable prescribing decisions. Design, setting, and participants: This serial cross-sectional study of prescribing prevalences in 16 health systems included electronic health records data from pediatric inpatient and outpatient encounters from January 1, 2011, to December 31, 2017. The health systems included academic medical centers with free-standing children's hospitals and community hospitals that were part of an adult health care system. Participants included approximately 2.9 million patients younger than 21 years observed per year. Data were analyzed from June 5, 2018, to April 14, 2020. Exposures: Prescription of 38 level A medications based on electronic health records. Main outcomes and measures: Annual prevalence of level A medication prescribing and estimated actionable exposures, calculated by combining estimated site-year prevalences across sites with each site weighted equally. Results: Data from approximately 2.9 million pediatric patients (median age, 8 [interquartile range, 2-16] years; 50.7% female, 62.3% White) were analyzed for a typical calendar year. The annual prescribing prevalence of at least 1 level A drug ranged from 7987 to 10 629 per 100 000 patients with increasing trends from 2011 to 2014. The most prescribed level A drug was the antiemetic ondansetron (annual prevalence of exposure, 8107 [95% CI, 8077-8137] per 100 000 children). Among commonly prescribed opioids, annual prevalence per 100 000 patients was 295 (95% CI, 273-317) for tramadol, 571 (95% CI, 557-586) for codeine, and 2116 (95% CI, 2097-2135) for oxycodone. The antidepressants citalopram, escitalopram, and amitriptyline were also commonly prescribed (annual prevalence, approximately 250 per 100 000 patients for each). Estimated prevalences of actionable exposures were highest for oxycodone and ondansetron (>300 per 100 000 patients annually). CYP2D6 and CYP2C19 substrates were more frequently prescribed than medications influenced by other genes. Conclusions and relevance: These findings suggest that opportunities for pharmacogenetic implementation among pediatric patients in the US are abundant. As expected, the greatest opportunity exists with implementing CYP2D6 and CYP2C19 pharmacogenetic guidance for commonly prescribed antiemetics, analgesics, and antidepressants

    Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers

    Get PDF
    Abstract: Genome-wide association studies (GWAS) have led to the identification of hundreds of susceptibility loci across cancers, but the impact of further studies remains uncertain. Here we analyse summary-level data from GWAS of European ancestry across fourteen cancer sites to estimate the number of common susceptibility variants (polygenicity) and underlying effect-size distribution. All cancers show a high degree of polygenicity, involving at a minimum of thousands of loci. We project that sample sizes required to explain 80% of GWAS heritability vary from 60,000 cases for testicular to over 1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th risk percentile of underlying polygenic risk scores (PRS), compared to average risk, ranges from 12 for testicular to 2.5 for ovarian cancer. We show that PRS have potential for risk stratification for cancers of breast, colon and prostate, but less so for others because of modest heritability and lower incidence
    corecore