38 research outputs found

    Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

    Get PDF
    L'optimisation de la gestion de l'eau en agriculture est essentielle dans les zones semi-arides afin de prĂ©server les ressources en eau qui sont dĂ©jĂ  faibles et erratiques dues Ă  des actions humaines et au changement climatique. Cette thĂšse vise Ă  utiliser la synergie des observations de tĂ©lĂ©dĂ©tection multispectrales (donnĂ©es radar, optiques et thermiques) pour un suivi Ă  haute rĂ©solution spatio-temporelle des besoins en eau des cultures. Dans ce contexte, diffĂ©rentes approches utilisant divers capteurs (Landsat-7/8, Sentinel-1 et MODIS) ont Ă©tĂ© developpĂ©es pour apporter une information sur l'humiditĂ© du sol (SM) et le stress hydrique des cultures Ă  une Ă©chelle spatio-temporelle pertinente pour la gestion de l'irrigation. Ce travail va parfaitement dans le sens des objectifs du projet REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) qui visent Ă  estimer l'humiditĂ© du sol dans la zone racinaire (RZSM) afin d'optimiser la gestion de l'eau d'irrigation. Des approches innovantes et prometteuses sont mises en place pour estimer l'Ă©vapotranspiration (ET), RZSM, la tempĂ©rature de surface du sol (LST) et le stress hydrique de la vĂ©gĂ©tation Ă  travers des indices de SM dĂ©rivĂ©s des observations multispectrales Ă  haute rĂ©solution spatio-temporelle. Les mĂ©thodologies proposĂ©es reposent sur des mĂ©thodes basĂ©es sur l'imagerie, la modĂ©lisation du transfert radiatif et la modĂ©lisation du bilan hydrique et d'Ă©nergie et sont appliquĂ©es dans une rĂ©gion Ă  climat semi-aride (centre du Maroc). Dans le cadre de ma thĂšse, trois axes ont Ă©tĂ© explorĂ©s. Dans le premier axe, un indice de RZSM dĂ©rivĂ© de LST-Landsat est utilisĂ© pour estimer l'ET sur des parcelles de blĂ© et des sols nus. L'estimation par modĂ©lisation de ET a Ă©tĂ© explorĂ©e en utilisant l'Ă©quation de Penman-monteith modifiĂ©e obtenue en introduisant une relation empirique simple entre la rĂ©sistance de surface (rc) et l'indice de RZSM. Ce dernier est estimĂ© Ă  partir de la tempĂ©rature de surface (LST) dĂ©rivĂ©e de Landsat, combinĂ©e avec les tempĂ©ratures extrĂȘmes (en conditions humides et sĂšches) simulĂ©e par un modĂšle de bilan d'Ă©nergie de surface pilotĂ© par le forçage mĂ©tĂ©orologique et la fraction de couverture vĂ©gĂ©tale dĂ©rivĂ©e de Landsat. La mĂ©thode utilisĂ©e est calibrĂ©e et validĂ©e sur deux parcelles de blĂ© situĂ©es dans la mĂȘme zone prĂšs de Marrakech au Maroc. Dans l'axe suivant, une mĂ©thode permettant de rĂ©cupĂ©rer la SM de la surface (0-5 cm) Ă  une rĂ©solution spatiale et temporelle Ă©levĂ©e est dĂ©veloppĂ©e Ă  partir d'une synergie entre donnĂ©es radar (Sentinel-1) et thermique (Landsat) et en utilisant un modĂšle de bilan d'Ă©nergie du sol. L'approche dĂ©veloppĂ©e a Ă©tĂ© validĂ©e sur des parcelles agricoles en sol nu et elle donne une estimation prĂ©cise de la SM avec une diffĂ©rence quadratique moyenne en comparant Ă  la SM in situ, Ă©gale Ă  0,03 m3 m-3. Dans le dernier axe, une nouvelle mĂ©thode est dĂ©veloppĂ©e pour dĂ©sagrĂ©ger la MODIS LST de 1 km Ă  100 m de rĂ©solution en intĂ©grant le SM proche de la surface dĂ©rivĂ©e des donnĂ©es radar Sentinel-1 et l'indice de vĂ©gĂ©tation optique dĂ©rivĂ© des observations Landsat. Le nouvel algorithme, qui inclut la rĂ©trodiffusion S-1 en tant qu'entrĂ©e dans la dĂ©sagrĂ©gation, produit des rĂ©sultats plus stables et robustes au cours de l'annĂ©e sĂ©lectionnĂ©e. Dont, 3,35 °C Ă©tait le RMSE le plus bas et 0,75 le coefficient de corrĂ©lation le plus Ă©levĂ© Ă©valuĂ©s en utilisant le nouvel algorithme.Optimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm

    Disaggregation of SMOS soil moisture to 100m resolution using MODIS optical/thermal and sentinel-1 radar data: evaluation over a bare soil site in morocco

    Get PDF
    The 40 km resolution SMOS (Soil Moisture and Ocean Salinity) soil moisture, previously disaggregated at a 1 km resolution using the DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) method based on MODIS optical/thermal data, is further disaggregated to 100 m resolution using Sentinel-1 backscattering coefficient (σ°). For this purpose, three distinct radar-based disaggregation methods are tested by linking the spatio-temporal variability of σ° and soil moisture data at the 1 km and 100 m resolution. The three methods are: (1) the weight method, which estimates soil moisture at 100 m resolution at a certain time as a function of σ° ratio (100 m to 1 km resolution) and the 1 km DISPATCH products of the same time; (2) the regression method which estimates soil moisture as a function of σ° where the regression parameters (e.g., intercept and slope) vary in space and time; and (3) the Cumulative Distribution Function (CDF) method, which estimates 100 m resolution soil moisture from the cumulative probability of 100 m resolution backscatter and the maximum to minimum 1 km resolution (DISPATCH) soil moisture difference. In each case, disaggregation results are evaluated against in situ measurements collected between 1 January 2016 and 11 October 2016 over a bare soil site in central Morocco. The determination coefficient (R2) between 1 km resolution DISPATCH and localized in situ soil moisture is 0.31. The regression and CDF methods have marginal effect on improving the DISPATCH accuracy at the station scale with a R2 between remotely sensed and in situ soil moisture of 0.29 and 0.34, respectively. By contrast, the weight method significantly improves the correlation between remotely sensed and in situ soil moisture with a R2 of 0.52. Likewise, the soil moisture estimates show low root mean square difference with in situ measurements (RMSD = 0.032 m3 m−3).This work is a contribution to the REC project funded by the European Commission Horizon 2020 Programme for Research and Innovation (H2020) in the context of the Marie SkƂodowska-Curie Research and Innovation Staff Exchange (RISE) action under grant agreement no: 645642. In addition, this work has been partially funded by a public grant of Ministerio de EconomĂ­a y Competitividad (DI-14-06587) and AGAUR-Generalitat de Catalunya (DI-2015-058)

    Suivi des besoins en eau des cultures à haute résolution spatio-temporelle par synergie des observations optiques/thermiques et radar

    No full text
    Optimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm.L'optimisation de la gestion de l'eau en agriculture est essentielle dans les zones semi-arides afin de prĂ©server les ressources en eau qui sont dĂ©jĂ  faibles et erratiques dues Ă  des actions humaines et au changement climatique. Cette thĂšse vise Ă  utiliser la synergie des observations de tĂ©lĂ©dĂ©tection multispectrales (donnĂ©es radar, optiques et thermiques) pour un suivi Ă  haute rĂ©solution spatio-temporelle des besoins en eau des cultures. Dans ce contexte, diffĂ©rentes approches utilisant divers capteurs (Landsat-7/8, Sentinel-1 et MODIS) ont Ă©tĂ© developpĂ©es pour apporter une information sur l'humiditĂ© du sol (SM) et le stress hydrique des cultures Ă  une Ă©chelle spatio-temporelle pertinente pour la gestion de l'irrigation. Ce travail va parfaitement dans le sens des objectifs du projet REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) qui visent Ă  estimer l'humiditĂ© du sol dans la zone racinaire (RZSM) afin d'optimiser la gestion de l'eau d'irrigation. Des approches innovantes et prometteuses sont mises en place pour estimer l'Ă©vapotranspiration (ET), RZSM, la tempĂ©rature de surface du sol (LST) et le stress hydrique de la vĂ©gĂ©tation Ă  travers des indices de SM dĂ©rivĂ©s des observations multispectrales Ă  haute rĂ©solution spatio-temporelle. Les mĂ©thodologies proposĂ©es reposent sur des mĂ©thodes basĂ©es sur l'imagerie, la modĂ©lisation du transfert radiatif et la modĂ©lisation du bilan hydrique et d'Ă©nergie et sont appliquĂ©es dans une rĂ©gion Ă  climat semi-aride (centre du Maroc). Dans le cadre de ma thĂšse, trois axes ont Ă©tĂ© explorĂ©s. Dans le premier axe, un indice de RZSM dĂ©rivĂ© de LST-Landsat est utilisĂ© pour estimer l'ET sur des parcelles de blĂ© et des sols nus. L'estimation par modĂ©lisation de ET a Ă©tĂ© explorĂ©e en utilisant l'Ă©quation de Penman-monteith modifiĂ©e obtenue en introduisant une relation empirique simple entre la rĂ©sistance de surface (rc) et l'indice de RZSM. Ce dernier est estimĂ© Ă  partir de la tempĂ©rature de surface (LST) dĂ©rivĂ©e de Landsat, combinĂ©e avec les tempĂ©ratures extrĂȘmes (en conditions humides et sĂšches) simulĂ©e par un modĂšle de bilan d'Ă©nergie de surface pilotĂ© par le forçage mĂ©tĂ©orologique et la fraction de couverture vĂ©gĂ©tale dĂ©rivĂ©e de Landsat. La mĂ©thode utilisĂ©e est calibrĂ©e et validĂ©e sur deux parcelles de blĂ© situĂ©es dans la mĂȘme zone prĂšs de Marrakech au Maroc. Dans l'axe suivant, une mĂ©thode permettant de rĂ©cupĂ©rer la SM de la surface (0-5 cm) Ă  une rĂ©solution spatiale et temporelle Ă©levĂ©e est dĂ©veloppĂ©e Ă  partir d'une synergie entre donnĂ©es radar (Sentinel-1) et thermique (Landsat) et en utilisant un modĂšle de bilan d'Ă©nergie du sol. L'approche dĂ©veloppĂ©e a Ă©tĂ© validĂ©e sur des parcelles agricoles en sol nu et elle donne une estimation prĂ©cise de la SM avec une diffĂ©rence quadratique moyenne en comparant Ă  la SM in situ, Ă©gale Ă  0,03 m3 m-3. Dans le dernier axe, une nouvelle mĂ©thode est dĂ©veloppĂ©e pour dĂ©sagrĂ©ger la MODIS LST de 1 km Ă  100 m de rĂ©solution en intĂ©grant le SM proche de la surface dĂ©rivĂ©e des donnĂ©es radar Sentinel-1 et l'indice de vĂ©gĂ©tation optique dĂ©rivĂ© des observations Landsat. Le nouvel algorithme, qui inclut la rĂ©trodiffusion S-1 en tant qu'entrĂ©e dans la dĂ©sagrĂ©gation, produit des rĂ©sultats plus stables et robustes au cours de l'annĂ©e sĂ©lectionnĂ©e. Dont, 3,35 °C Ă©tait le RMSE le plus bas et 0,75 le coefficient de corrĂ©lation le plus Ă©levĂ© Ă©valuĂ©s en utilisant le nouvel algorithme

    Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data

    No full text
    International audienceThe use of land surface temperature (LST) for monitoring the consumption and water status of crops requires data at fine spatial and temporal resolutions. Unfortunately, the current spaceborne thermal sensors provide data at either high temporal (e.g. MODIS: Moderate Resolution Imaging Spectro-radiometer) or high spatial (e.g. Landsat) resolution separately. Disaggregating low spatial resolution (LR) LST data using ancillary data available at high spatio-temporal resolution could compensate for the lack of high spatial resolution (HR) LST observations. Existing LST downscaling approaches generally rely on the fractional green vegetation cover (fgv) derived from HR reflectances but they do not take into account the soil water availability to explain the spatial variability in LST at HR. In this context, a new method is developed to disaggregate kilometric MODIS LST at 100 m resolution by including the Sentinel-1 (S-1) backscatter, which is indirectly linked to surface soil moisture, in additionto the Landsat-7 and Landsat-8 (L-7 & L-8) reflectances. The approach is tested over two different sites-an 8 km by 8 km irrigated crop area named "R3" and a 12 km by 12 km rainfed area named "Sidi Rahal" in central Morocco (Marrakech)-on the seven dates when S-1, and L-7 or L-8 acquisitions coincide with a one-day precision during the 2015-2016 growing season. The downscaling methods are applied to the 1 km resolution MODIS-Terra LST data, and their performance is assessed by comparing the 100 m disaggregated LST to Landsat LST in three cases: no disaggregation, disaggregation using Landsat fgv only, disaggregation using both Landsat fgv and S-1 backscatter. When including fgv only in the disaggregation procedure, the mean root mean square error in LST decreases from 4.20 to 3.60 °C and the mean correlation coefficient (R) increases from 0.45 to 0.69 compared to the non-disaggregated case within R3. The new methodology including the S-1 backscatter as input to the disaggregation is found to be systematically more accurate on the available dates with a disaggregation mean error decreasing to 3.35 °C and a mean R increasing to 0.75

    Assessment of the modified two-source energy balance (TSEB) model for estimating evapotranspiration and its components over an irrigated olive orchard in Morocco

    No full text
    International audienceOlives constitute a frequently grown crop in semi-arid areas. Therefore, accurate quantification of evapotranspiration(ET) within olive groves is crucial to enhance agricultural water productivity and promote their resilienceto water scarcity and future climate scenarios. In the present work, we assessed the accuracy of 3 versionsof the Two-Source-Energy-Balance (TSEB) model, the first one “TSEB-SPT” using a standard Priestley-Taylorcoefficient (αPT) to estimate the transpiration, the second one called “TSEB-CPT” constrained by a computedαPT using measured ET along with the equilibrium term, and the third one “TSEB-SM” where soil moisture isused as an additional constraint to improve the soil evaporation. The 3 models were applied over an irrigatedolive orchard in the Tensift basin (Morocco) during two growing periods of 2003 and 2004. The comparison withground-based flux measurements from Eddy-Covariance tower and sap flow data revealed that the TSEB-SPTmodel overestimates ET with an average relative error of 87% and a percentage bias of -78% during the twogrowing seasons. Conversely, TSEB-SM and TSEB-CPT improved ET estimates as compared to TSEB-SPT, withmean relative errors of 31% and 24% and an average percentage bias of 0.6% and -7.4%, respectively. For ETpartitioning, TSEB-SM appears to be less effective in estimating transpiration, while the simulated transpirationby TSEB-CPT fits well the actual one with a root mean square error of 0.27 mm, mainly during the summer of2003. These results open a path for future improvements: by reviewing the calibration procedure of αPT, andimplementing alternative formulas to compute the evaporation, the TSEB-SM could be potentially a robust toolfor monitoring the seasonal variation of ET and its partitioning over a heterogeneous canopy cover

    Retrieving Crop Albedo Based on Radar Sentinel-1 and Random Forest Approach

    No full text
    Monitoring agricultural crops is of paramount importance for preserving water resources and increasing water efficiency over semi-arid areas. This can be achieved by modelling the water resources all along the growing season through the coupled water–surface energy balance. Surface albedo is a key land surface variable to constrain the surface radiation budget and hence the coupled water–surface energy balance. In order to capture the hydric status changes over the growing season, optical remote sensing becomes impractical due to cloud cover in some periods, especially over irrigated winter crops in semi-arid regions. To fill the gap, this paper aims to generate cloudless surface albedo product from Sentinel-1 data that offers a source of high spatio-temporal resolution images. This can help to better capture the vegetation development along the growth season through the surface radiation budget. Random Forest (RF) algorithm was implemented using Sentinel-1 backscatters as input. The approach was tested over an irrigated semi-arid zone in Morocco, which is known by its heterogeneity in term of soil conditions and crop types. The obtained results are evaluated against Landsat-derived albedo with quasi-concurrent Landsat/Sentinel-1 overpasses (up to one day offset), while a further validation was investigated using in situ field scale albedo data. The best model-hyperparameters selection was dependent on two validation approaches (K-fold cross-validation ‘k = 10’, and holdout). The more robust and accurate model parameters are those that represent the best statistical metrics (root mean square error ‘RMSE’, bias and correlation coefficient ‘R’). Coefficient values ranging from 0.70 to 0.79 and a RMSE value between 0.0002 and 0.00048 were obtained comparing Landsat and predicted albedo by RF method. The relative error ratio equals 4.5, which is acceptable to predict surface albedo

    Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions

    No full text
    International audienceAccurate estimation of evapotranspiration (ET) is of crucial importance in water science and hydrological process understanding especially in semi-arid/arid areas since ET represents more than 85% of the total water budget. FAO-56 is one of the widely used formulations to estimate the actual crop evapotranspiration (ET c act) due to its operational nature and since it represents a reasonable compromise between simplicity and accuracy. In this vein, the objective of this paper was to examine the possibility of improving ET c act estimates through remote sensing data assimilation. For this purpose, remotely sensed soil moisture (SM) and Land surface temperature (LST) data were simultaneously assimilated into FAO-dualK c. Surface SM observations were assimilated into the soil evaporation (E s) component through the soil evaporation coefficient, and LST data were assimilated into the actual crop transpiration (T c act) component through the crop stress coefficient. The LST data were used to estimate the water stress coefficient (K s) as a proxy of LST (LST proxy). The FAO-Ks was corrected by assimilating LST proxy derived from Landsat data based on the variances of predicted errors on K s estimates from FAO-56 model and thermal-derived K s. The proposed approach was tested over a semi-arid area in Morocco using first, in situ data collected during 2002-2003 and 2015-2016 wheat growth seasons over two different fields and then, remotely sensed data derived from disaggregated Soil Moisture Active Passive (SMAP) SM and Landsat-LST sensors were used. Assimilating SM data leads to an improvement of the ET c act model prediction: the root mean square error (RMSE) decreased from 0.98 to 0.65 mm/day compared to the classical FAO-dualK c using in situ SM. Moreover, assimilating both in situ SM and LST data provided more accurate results with a RMSE error of 0.55 mm/day. By using SMAP-based SM and Landsat-LST, results also improved in comparison with standard FAO and reached a RMSE of 0.73 mm/day against eddy-covariance ET c act measurements

    Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco

    No full text
    International audienceAccurate seasonal forecasting of cereal yields is an important decision support tool for countries, such as Morocco, that are not self-sufficient in order to predict, as early as possible, importation needs. This study aims to develop an early forecasting model of cereal yields (soft wheat, barley and durum wheat) at the scale of the agricultural province considering the 15 most productive over 2000–2017 (i.e., 15 × 18 = 270 yields values). To this objective, we built on previous works that showed a tight linkage between cereal yields and various datasets including weather data (rainfall and air temperature), regional climate indices (North Atlantic Oscillation in particular), and drought indices derived from satellite observations in different wavelengths. The combination of the latter three data sets is assessed to predict cereal yields using linear (Multiple Linear Regression, MLR) and non-linear (Support Vector Machine, SVM; Random Forest, RF, and eXtreme Gradient Boost, XGBoost) machine learning algorithms. The calibration of the algorithmic parameters of the different approaches are carried out using a 5-fold cross validation technique and a leave-one-out method is implemented for model validation. The statistical metrics of the models are first analyzed as a function of the input datasets that are used, and as a function of the lead times, from 4 months to 2 months before harvest. The results show that combining data from multiple sources outperformed models based on one dataset only. In addition, the satellite drought indices are a major source of information for cereal prediction when the forecasting is carried out close to harvest (2 months before), while weather data and, to a lesser extent, climate indices, are key variables for earlier predictions. The best models can accurately predict yield in January (4 months before harvest) with an R2 = 0.88 and RMSE around 0.22 t. ha−1. The XGBoost method exhibited the best metrics. Finally, training a specific model separately for each group of provinces, instead of one global model, improved the prediction performance by reducing the RMSE by 10% to 35% depending on the provinces. In conclusion, the results of this study pointed out that combining remote sensing drought indices with climate and weather variables using a machine learning technique is a promising approach for cereal yield forecasting
    corecore