121 research outputs found

    Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time

    Get PDF
    Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space

    Provenance of invaders has scale-dependent impacts in a changing wetland ecosystem

    Get PDF
    Exotic species are associated with a variety of impacts on biodiversity, but it is unclear whether impacts of exotic species differ from those of native species with similar growth forms or native species invading disturbed sites. We compared presence and abundance of native and exotic invaders with changes in wetland plant species diversity over a 28-year period by re-surveying 22 ponds to identify factors correlated with observed changes. We also compared communities found within dense patches of native and exotic emergent species with similar habits. Within patches, we found no categorical diversity differences between areas dominated by native or exotic emergent species. At the pond scale, the cover of the exotic grass Phragmites australis best predicted change in diversity and evenness over time, likely owing to its significant increase in coverage over the study period. These changes in diversity and evenness were strongest in younger, less successionally-advanced ponds. Changes associated with cover of P. australis in these ponds were not consistent with expected diversity decreases, but instead with a dampening of diversity gains, such that the least-invaded ponds increased in diversity the most over the study period. There were more mixed effects on evenness, ranging from a reduction in evenness gains to actual losses of evenness in the ponds with highest invader cover. In this wetland complex, the habit, origin and invasiveness of species contribute to diversity responses in a scale- and context-dependent fashion. Future efforts to preserve diversity should focus on preventing the arrival and spread of invaders that have the potential to cover large areas at high densities, regardless of their origin. Future studies should also investigate more thoroughly how changes in diversity associated with species invasions are impacted by other ongoing ecosystem changes
    • …
    corecore