30 research outputs found

    Rotating models of young solar-type stars : Exploring braking laws and angular momentum transport processes

    Full text link
    We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a stronger coupling between their radiative region and the convective envelope. Regardless of the set of prescriptions, however, we cannot simultaneously reproduce surface angular velocity and the internal profile of the Sun or the evolution of lithium abundance. We confirm the idea that additional transport mechanisms must occur in solar-type stars until they reach the age of the Sun. Whether these processes are the same as those needed to explain recent asteroseismic data in more advanced evolutionary phases is still an open question.Comment: 16 pages, 16 figures, accepted for publication in A&

    Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets I. From the PMS to the RGB at solar metallicity

    Full text link
    Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of peculiar importance and should be correctly treated. We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. We couple the tidal dissipation formalism described in Mathis (2015) to the stellar evolution code STAREVOL and apply it to rotating stars with masses between 0.3 and 1.4 M⊙_\odot. In addition, we generalize the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. On the PMS the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the MS it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main-sequence, compared to a normalized dissipation rate that only takes into account structural changes. The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.Comment: 13 pages, 7 figures, accepted for publication in A&

    Further evidence of the link between activity and metallicity using the flaring properties of stars in the Kepler field

    Full text link
    The magnetic activity level of low-mass stars is known to vary as a function of the physical properties of the star. Many studies have shown that the stellar mass and rotation are both important parameters that determine magnetic activity levels. In contrast, the impact of a star's chemical composition on magnetic activity has received comparatively little attention. Data sets for traditional activity proxies, e.g. X-ray emission or calcium emission, are not large enough to search for metallicity trends in a statistically meaningful way. Recently, studies have used the photometric variability amplitude as a proxy for magnetic activity to investigate the role of metallicity because it can be relatively easily measured for large samples of stars. These studies find that magnetic activity and metallicity are positively correlated. In this work, we investigate the link between activity and metallicity further by studying the flaring properties of stars in the Kepler field. Similar to the photometric variability, we find that flaring activity is stronger in more metal-rich stars for a fixed mass and rotation period. This result adds to a growing body of evidence that magnetic field generation is correlated with metallicity.Comment: 6 pages, 5 figures, accepted for publication in MNRA

    Stellar Stalling:the view from asteroseismology

    Get PDF
    Asteroseismology, the study of intrinsic oscillations in stars, can reveal fundamental properties of cool stars critical in our understanding of stellar rotational evolution. Through space missions such as Kepler and TESS, asteroseismology has seen a surge of new data and research in the past decade. These data have contributed to important results in the field of stellar braking particularly for F, G and K stars, thanks to estimates of stellar age for rotating field stars, and the measurement of stellar rotation through oscillation spectra as important comparisons for estimates from star-spots. In this talk, I will provide an introduction to asteroseismology how it can provide important results for your research. This will be followed by a breakdown of how asteroseismologists have used these techniques to establish the presence of weakened magnetic braking on the main sequence using asteroseismic data, and what we should be looking forward to from these techniques with the TESS mission

    Rotational evolution of young low-mass stars

    No full text
    Le moment cinétique d’une étoile, comme sa masse ou sa composition chimique, est l’une de ses propriétés fondamentales, l’un de celles qui varient à cours du temps et influent sur la structure de l’étoile. Celui-ci peut être global, on l’observe alors à travers la vitesse de rotation de surface d’une étoile, ou local, auquel cas il nous faut sonder l’intérieur stellaire et étudier les processus de redistribution au sein des régions internes du moment cinétique. Au cours de cette thèse dans le cadre du projet ToUpiES, nous nous sommes intéressés en particulier à l’évolution du moment cinétique des étoiles de faible masse au cours de leur jeunesse, qui est une période critique de leur vie en ce qui concerne l’impact et l’évolution du moment cinétique. Nous avons d’abord inclus au sein du code d’évolution STAREVOL les prescriptions les plus à jour pour l’extraction du moment cinétique par les vents magnétisés. L’étude systématique des combinaisons de ce freinage avec différentes prescriptions existantes pour le traitement de la turbulence horizontale et verticale dans la zone radiative des étoiles, nous a permis de sélectionner un jeu de prescriptions capable de reproduire, les périodes de rotation dans les amas ouverts pour une étoile de type solaire. Nous comparons ensuite l’application de ces processus de transport et d’extraction du moment cinétique à un modèle de 1, 2 masse solaire, aux autres processus jugés potentiellement efficaces pour transport le moment cinétique à ce jour (ondes internes de gravités, instabilité MHD de Tayler-Spruit, modes de gravités). Cela nous a permis de présenter dans chacun des cas les spécificités du profil de rotation prédit par ces différents modes de transport. Puis, nous avons mis en place un modèle rotationnel fonctionnel adapté à l’ensemble des étoiles de faible masse, permettant entre autre de reproduire les périodes de rotation observées dans les amas jeunes pour les étoiles de faible masse (avec une masse comprise entre 0, 2 et 1, 1 M⊙). Ceci a donné lieu à une grille de modèle d’évolution unique à ce jour. Enfin, cette grille a été utilisée dans le cadre de travaux dans différents domaines, tels que l’impact de l’évolution stellaire sur l’habitabilité d’un système, la caractérisation d’étoiles-hôte ou encore l’étude de l’évolution de la topologie magnétique au cours des phases jeunes.The angular momentum content of a star, as its mass or its chemical composition is one of the fundamental properties of a star, one of those that evolves with time and modify the stellar structure. The angular momentum can be studied as a global property, we can then observe it through the surface rotation velocity, or a local property that vary inside the star, we therefore have to probe the stellar radiation zone and study the secular angular momentum redistribution processes that happen in this region. During this PhD, in the frame of the ToUpiES project, we have been especially interested in the evolution of the young low-mass stars angular momentum, since this phase of evolution is critical regarding the evolution of extraction and redistribution angular momentum processes. First, we included in the STAREVOL evolution code the most up-to-date prescription for the wind-driven angular momentum extraction. We led a systematic study of the various combination of this braking with the different existing prescriptions for the treatment of horizontal and vertical turbulent motions in stellar radiative zones. This allows us to select a set of prescription able to reproduce the observed rotation periods in young open clusters for a broad mass-range. Next, we analysed how these prescriptions for extraction and transport of angular momentum behave when applied to a 1.2M⊙ model. We compared the result to what is obtained with other processes estimated as potentially very efficient to redistribute angular momentum (internal gravity waves, MHD Tayler-Spruit instability, gravity modes). This allows us to derive in each case, the specificity of the rotation profiles predicted by the different transport processes. Then, we set up a functional rotational model adapted to almost the entire range low-mass stars, allowing to reproduce the observed low-mass stars rotation periods in young open clusters (with 0, 2M⊙ ≀M≀ 1, 1M⊙). This models can also predict the rotational evolution at different metallicities. Eventually, these models have been used in the frame of various works in different domains such as the characterisation of planet host-stars, the evolution of the magnetic topology during the young stellar phases or even the impact of stellar evolution on the habitability of a planetary system

    Évolution de la rotation des Ă©toiles jeunes de faible masse

    No full text
    The angular momentum content of a star, as its mass or its chemical composition is one of the fundamental properties of a star, one of those that evolves with time and modify the stellar structure. The angular momentum can be studied as a global property, we can then observe it through the surface rotation velocity, or a local property that vary inside the star, we therefore have to probe the stellar radiation zone and study the secular angular momentum redistribution processes that happen in this region. During this PhD, in the frame of the ToUpiES project, we have been especially interested in the evolution of the young low-mass stars angular momentum, since this phase of evolution is critical regarding the evolution of extraction and redistribution angular momentum processes. First, we included in the STAREVOL evolution code the most up-to-date prescription for the wind-driven angular momentum extraction. We led a systematic study of the various combination of this braking with the different existing prescriptions for the treatment of horizontal and vertical turbulent motions in stellar radiative zones. This allows us to select a set of prescription able to reproduce the observed rotation periods in young open clusters for a broad mass-range. Next, we analysed how these prescriptions for extraction and transport of angular momentum behave when applied to a 1.2M⊙ model. We compared the result to what is obtained with other processes estimated as potentially very efficient to redistribute angular momentum (internal gravity waves, MHD Tayler-Spruit instability, gravity modes). This allows us to derive in each case, the specificity of the rotation profiles predicted by the different transport processes. Then, we set up a functional rotational model adapted to almost the entire range low-mass stars, allowing to reproduce the observed low-mass stars rotation periods in young open clusters (with 0, 2M⊙ ≀M≀ 1, 1M⊙). This models can also predict the rotational evolution at different metallicities. Eventually, these models have been used in the frame of various works in different domains such as the characterisation of planet host-stars, the evolution of the magnetic topology during the young stellar phases or even the impact of stellar evolution on the habitability of a planetary system.Le moment cinétique d’une étoile, comme sa masse ou sa composition chimique, est l’une de ses propriétés fondamentales, l’un de celles qui varient à cours du temps et influent sur la structure de l’étoile. Celui-ci peut être global, on l’observe alors à travers la vitesse de rotation de surface d’une étoile, ou local, auquel cas il nous faut sonder l’intérieur stellaire et étudier les processus de redistribution au sein des régions internes du moment cinétique. Au cours de cette thèse dans le cadre du projet ToUpiES, nous nous sommes intéressés en particulier à l’évolution du moment cinétique des étoiles de faible masse au cours de leur jeunesse, qui est une période critique de leur vie en ce qui concerne l’impact et l’évolution du moment cinétique. Nous avons d’abord inclus au sein du code d’évolution STAREVOL les prescriptions les plus à jour pour l’extraction du moment cinétique par les vents magnétisés. L’étude systématique des combinaisons de ce freinage avec différentes prescriptions existantes pour le traitement de la turbulence horizontale et verticale dans la zone radiative des étoiles, nous a permis de sélectionner un jeu de prescriptions capable de reproduire, les périodes de rotation dans les amas ouverts pour une étoile de type solaire. Nous comparons ensuite l’application de ces processus de transport et d’extraction du moment cinétique à un modèle de 1, 2 masse solaire, aux autres processus jugés potentiellement efficaces pour transport le moment cinétique à ce jour (ondes internes de gravités, instabilité MHD de Tayler-Spruit, modes de gravités). Cela nous a permis de présenter dans chacun des cas les spécificités du profil de rotation prédit par ces différents modes de transport. Puis, nous avons mis en place un modèle rotationnel fonctionnel adapté à l’ensemble des étoiles de faible masse, permettant entre autre de reproduire les périodes de rotation observées dans les amas jeunes pour les étoiles de faible masse (avec une masse comprise entre 0, 2 et 1, 1 M⊙). Ceci a donné lieu à une grille de modèle d’évolution unique à ce jour. Enfin, cette grille a été utilisée dans le cadre de travaux dans différents domaines, tels que l’impact de l’évolution stellaire sur l’habitabilité d’un système, la caractérisation d’étoiles-hôte ou encore l’étude de l’évolution de la topologie magnétique au cours des phases jeunes

    How do stellar evolution and parameters influence the habitable zone?

    No full text
    International audienceNot Availabl

    Angular Momentum Evolution of Young Solar-type Stars

    No full text
    We present stellar evolution models of young solar-type stars including self consistent treatment of rotational mixing and extraction of angular momentum (AM) by magnetized wind including the most up-to-date physic of AM transpor
    corecore