30 research outputs found
Rotating models of young solar-type stars : Exploring braking laws and angular momentum transport processes
We study the predicted rotational evolution of solar-type stars from the
pre-main sequence to the solar age with 1D rotating evolutionary models
including physical ingredients. We computed rotating evolution models of
solar-type stars including an external stellar wind torque and internal
transport of angular momentum following the method of Maeder and Zahn with the
code STAREVOL. We explored different formalisms and prescriptions available
from the literature. We tested the predictions of the models against recent
rotational period data from extensive photometric surveys, lithium abundances
of solar-mass stars in young clusters, and the helioseismic rotation profile of
the Sun. We find a best-matching combination of prescriptions for both internal
transport and surface extraction of angular momentum. This combination provides
a very good fit to the observed evolution of rotational periods for solar-type
stars from early evolution to the age of the Sun. Additionally, we show that
fast rotators experience a stronger coupling between their radiative region and
the convective envelope. Regardless of the set of prescriptions, however, we
cannot simultaneously reproduce surface angular velocity and the internal
profile of the Sun or the evolution of lithium abundance. We confirm the idea
that additional transport mechanisms must occur in solar-type stars until they
reach the age of the Sun. Whether these processes are the same as those needed
to explain recent asteroseismic data in more advanced evolutionary phases is
still an open question.Comment: 16 pages, 16 figures, accepted for publication in A&
Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets I. From the PMS to the RGB at solar metallicity
Star-planet interactions must be taken into account in stellar models to
understand the dynamical evolution of close-in planets. The dependence of the
tidal interactions on the structural and rotational evolution of the star is of
peculiar importance and should be correctly treated. We quantify how tidal
dissipation in the convective envelope of rotating low-mass stars evolves from
the pre-main sequence up to the red-giant branch depending on the initial
stellar mass. We investigate the consequences of this evolution on planetary
orbital evolution. We couple the tidal dissipation formalism described in
Mathis (2015) to the stellar evolution code STAREVOL and apply it to rotating
stars with masses between 0.3 and 1.4 M. In addition, we generalize the
work of Bolmont & Mathis (2016) by following the orbital evolution of close-in
planets using the new tidal dissipation predictions for advanced phases of
stellar evolution. On the PMS the evolution of tidal dissipation is controlled
by the evolution of the internal structure of the contracting star. On the MS
it is strongly driven by the variation of surface rotation that is impacted by
magnetized stellar winds braking. The main effect of taking into account the
rotational evolution of the stars is to lower the tidal dissipation strength by
about four orders of magnitude on the main-sequence, compared to a normalized
dissipation rate that only takes into account structural changes. The evolution
of the dissipation strongly depends on the evolution of the internal structure
and rotation of the star. From the pre-main sequence up to the tip of the
red-giant branch, it varies by several orders of magnitude, with strong
consequences for the orbital evolution of close-in massive planets. These
effects are the strongest during the pre-main sequence, implying that the
planets are mainly sensitive to the star's early history.Comment: 13 pages, 7 figures, accepted for publication in A&
Further evidence of the link between activity and metallicity using the flaring properties of stars in the Kepler field
The magnetic activity level of low-mass stars is known to vary as a function
of the physical properties of the star. Many studies have shown that the
stellar mass and rotation are both important parameters that determine magnetic
activity levels. In contrast, the impact of a star's chemical composition on
magnetic activity has received comparatively little attention. Data sets for
traditional activity proxies, e.g. X-ray emission or calcium emission, are not
large enough to search for metallicity trends in a statistically meaningful
way. Recently, studies have used the photometric variability amplitude as a
proxy for magnetic activity to investigate the role of metallicity because it
can be relatively easily measured for large samples of stars. These studies
find that magnetic activity and metallicity are positively correlated. In this
work, we investigate the link between activity and metallicity further by
studying the flaring properties of stars in the Kepler field. Similar to the
photometric variability, we find that flaring activity is stronger in more
metal-rich stars for a fixed mass and rotation period. This result adds to a
growing body of evidence that magnetic field generation is correlated with
metallicity.Comment: 6 pages, 5 figures, accepted for publication in MNRA
Stellar Stalling:the view from asteroseismology
Asteroseismology, the study of intrinsic oscillations in stars, can reveal fundamental properties of cool stars critical in our understanding of stellar rotational evolution. Through space missions such as Kepler and TESS, asteroseismology has seen a surge of new data and research in the past decade. These data have contributed to important results in the field of stellar braking particularly for F, G and K stars, thanks to estimates of stellar age for rotating field stars, and the measurement of stellar rotation through oscillation spectra as important comparisons for estimates from star-spots.
In this talk, I will provide an introduction to asteroseismology how it can provide important results for your research. This will be followed by a breakdown of how asteroseismologists have used these techniques to establish the presence of weakened magnetic braking on the main sequence using asteroseismic data, and what we should be looking forward to from these techniques with the TESS mission
Rotational evolution of young low-mass stars
Le moment cineÌtique dâune eÌtoile, comme sa masse ou sa composition chimique, est lâune de ses proprieÌteÌs fondamentales, lâun de celles qui varient aÌ cours du temps et influent sur la structure de lâeÌtoile. Celui-ci peut eÌtre global, on lâobserve alors aÌ travers la vitesse de rotation de surface dâune eÌtoile, ou local, auquel cas il nous faut sonder lâinteÌrieur stellaire et eÌtudier les processus de redistribution au sein des reÌgions internes du moment cineÌtique. Au cours de cette theÌse dans le cadre du projet ToUpiES, nous nous sommes inteÌresseÌs en particulier aÌ lâeÌvolution du moment cineÌtique des eÌtoiles de faible masse au cours de leur jeunesse, qui est une peÌriode critique de leur vie en ce qui concerne lâimpact et lâeÌvolution du moment cineÌtique. Nous avons dâabord inclus au sein du code dâeÌvolution STAREVOL les prescriptions les plus aÌ jour pour lâextraction du moment cineÌtique par les vents magneÌtiseÌs. LâeÌtude systeÌmatique des combinaisons de ce freinage avec diffeÌrentes prescriptions existantes pour le traitement de la turbulence horizontale et verticale dans la zone radiative des eÌtoiles, nous a permis de seÌlectionner un jeu de prescriptions capable de reproduire, les peÌriodes de rotation dans les amas ouverts pour une eÌtoile de type solaire. Nous comparons ensuite lâapplication de ces processus de transport et dâextraction du moment cineÌtique aÌ un modeÌle de 1, 2 masse solaire, aux autres processus jugeÌs potentiellement efficaces pour transport le moment cineÌtique aÌ ce jour (ondes internes de graviteÌs, instabiliteÌ MHD de Tayler-Spruit, modes de graviteÌs). Cela nous a permis de preÌsenter dans chacun des cas les speÌcificiteÌs du profil de rotation preÌdit par ces diffeÌrents modes de transport. Puis, nous avons mis en place un modeÌle rotationnel fonctionnel adapteÌ aÌ lâensemble des eÌtoiles de faible masse, permettant entre autre de reproduire les peÌriodes de rotation observeÌes dans les amas jeunes pour les eÌtoiles de faible masse (avec une masse comprise entre 0, 2 et 1, 1 Mâ). Ceci a donneÌ lieu aÌ une grille de modeÌle dâeÌvolution unique aÌ ce jour. Enfin, cette grille a eÌteÌ utiliseÌe dans le cadre de travaux dans diffeÌrents domaines, tels que lâimpact de lâeÌvolution stellaire sur lâhabitabiliteÌ dâun systeÌme, la caracteÌrisation dâeÌtoiles-hoÌte ou encore lâeÌtude de lâeÌvolution de la topologie magneÌtique au cours des phases jeunes.The angular momentum content of a star, as its mass or its chemical composition is one of the fundamental properties of a star, one of those that evolves with time and modify the stellar structure. The angular momentum can be studied as a global property, we can then observe it through the surface rotation velocity, or a local property that vary inside the star, we therefore have to probe the stellar radiation zone and study the secular angular momentum redistribution processes that happen in this region. During this PhD, in the frame of the ToUpiES project, we have been especially interested in the evolution of the young low-mass stars angular momentum, since this phase of evolution is critical regarding the evolution of extraction and redistribution angular momentum processes. First, we included in the STAREVOL evolution code the most up-to-date prescription for the wind-driven angular momentum extraction. We led a systematic study of the various combination of this braking with the different existing prescriptions for the treatment of horizontal and vertical turbulent motions in stellar radiative zones. This allows us to select a set of prescription able to reproduce the observed rotation periods in young open clusters for a broad mass-range. Next, we analysed how these prescriptions for extraction and transport of angular momentum behave when applied to a 1.2Mâ model. We compared the result to what is obtained with other processes estimated as potentially very efficient to redistribute angular momentum (internal gravity waves, MHD Tayler-Spruit instability, gravity modes). This allows us to derive in each case, the specificity of the rotation profiles predicted by the different transport processes. Then, we set up a functional rotational model adapted to almost the entire range low-mass stars, allowing to reproduce the observed low-mass stars rotation periods in young open clusters (with 0, 2Mâ â€M†1, 1Mâ). This models can also predict the rotational evolution at different metallicities. Eventually, these models have been used in the frame of various works in different domains such as the characterisation of planet host-stars, the evolution of the magnetic topology during the young stellar phases or even the impact of stellar evolution on the habitability of a planetary system
Ăvolution de la rotation des Ă©toiles jeunes de faible masse
The angular momentum content of a star, as its mass or its chemical composition is one of the fundamental properties of a star, one of those that evolves with time and modify the stellar structure. The angular momentum can be studied as a global property, we can then observe it through the surface rotation velocity, or a local property that vary inside the star, we therefore have to probe the stellar radiation zone and study the secular angular momentum redistribution processes that happen in this region. During this PhD, in the frame of the ToUpiES project, we have been especially interested in the evolution of the young low-mass stars angular momentum, since this phase of evolution is critical regarding the evolution of extraction and redistribution angular momentum processes. First, we included in the STAREVOL evolution code the most up-to-date prescription for the wind-driven angular momentum extraction. We led a systematic study of the various combination of this braking with the different existing prescriptions for the treatment of horizontal and vertical turbulent motions in stellar radiative zones. This allows us to select a set of prescription able to reproduce the observed rotation periods in young open clusters for a broad mass-range. Next, we analysed how these prescriptions for extraction and transport of angular momentum behave when applied to a 1.2Mâ model. We compared the result to what is obtained with other processes estimated as potentially very efficient to redistribute angular momentum (internal gravity waves, MHD Tayler-Spruit instability, gravity modes). This allows us to derive in each case, the specificity of the rotation profiles predicted by the different transport processes. Then, we set up a functional rotational model adapted to almost the entire range low-mass stars, allowing to reproduce the observed low-mass stars rotation periods in young open clusters (with 0, 2Mâ â€M†1, 1Mâ). This models can also predict the rotational evolution at different metallicities. Eventually, these models have been used in the frame of various works in different domains such as the characterisation of planet host-stars, the evolution of the magnetic topology during the young stellar phases or even the impact of stellar evolution on the habitability of a planetary system.Le moment cineÌtique dâune eÌtoile, comme sa masse ou sa composition chimique, est lâune de ses proprieÌteÌs fondamentales, lâun de celles qui varient aÌ cours du temps et influent sur la structure de lâeÌtoile. Celui-ci peut eÌtre global, on lâobserve alors aÌ travers la vitesse de rotation de surface dâune eÌtoile, ou local, auquel cas il nous faut sonder lâinteÌrieur stellaire et eÌtudier les processus de redistribution au sein des reÌgions internes du moment cineÌtique. Au cours de cette theÌse dans le cadre du projet ToUpiES, nous nous sommes inteÌresseÌs en particulier aÌ lâeÌvolution du moment cineÌtique des eÌtoiles de faible masse au cours de leur jeunesse, qui est une peÌriode critique de leur vie en ce qui concerne lâimpact et lâeÌvolution du moment cineÌtique. Nous avons dâabord inclus au sein du code dâeÌvolution STAREVOL les prescriptions les plus aÌ jour pour lâextraction du moment cineÌtique par les vents magneÌtiseÌs. LâeÌtude systeÌmatique des combinaisons de ce freinage avec diffeÌrentes prescriptions existantes pour le traitement de la turbulence horizontale et verticale dans la zone radiative des eÌtoiles, nous a permis de seÌlectionner un jeu de prescriptions capable de reproduire, les peÌriodes de rotation dans les amas ouverts pour une eÌtoile de type solaire. Nous comparons ensuite lâapplication de ces processus de transport et dâextraction du moment cineÌtique aÌ un modeÌle de 1, 2 masse solaire, aux autres processus jugeÌs potentiellement efficaces pour transport le moment cineÌtique aÌ ce jour (ondes internes de graviteÌs, instabiliteÌ MHD de Tayler-Spruit, modes de graviteÌs). Cela nous a permis de preÌsenter dans chacun des cas les speÌcificiteÌs du profil de rotation preÌdit par ces diffeÌrents modes de transport. Puis, nous avons mis en place un modeÌle rotationnel fonctionnel adapteÌ aÌ lâensemble des eÌtoiles de faible masse, permettant entre autre de reproduire les peÌriodes de rotation observeÌes dans les amas jeunes pour les eÌtoiles de faible masse (avec une masse comprise entre 0, 2 et 1, 1 Mâ). Ceci a donneÌ lieu aÌ une grille de modeÌle dâeÌvolution unique aÌ ce jour. Enfin, cette grille a eÌteÌ utiliseÌe dans le cadre de travaux dans diffeÌrents domaines, tels que lâimpact de lâeÌvolution stellaire sur lâhabitabiliteÌ dâun systeÌme, la caracteÌrisation dâeÌtoiles-hoÌte ou encore lâeÌtude de lâeÌvolution de la topologie magneÌtique au cours des phases jeunes
How do stellar evolution and parameters influence the habitable zone?
International audienceNot Availabl
Angular Momentum Evolution of Young Solar-type Stars
We present stellar evolution models of young solar-type stars including self consistent treatment of rotational mixing and extraction of angular momentum (AM) by magnetized wind including the most up-to-date physic of AM transpor