210 research outputs found
Comparing Effects of Insecticides on Two Green Lacewings Species, Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae)
This study compared lethal and sublethal effects of five insecticides, chlorantraniliprole, cyantraniliprole, spinetoram, novaluron, and lambda-cyhalothrin, on adult and second instars of two green lacewing species, Chrysoperla carnea (Stephens) and Chrysoperla johnsoni Henry, Wells and Pupedis (Neuroptera: Chrysopidae) in the laboratory. Formulated pesticides were tested using concentrations equivalent to the high label rate dissolved in 378.5 liters of water. Novaluron and lambda-cyhalothrin were toxic to larvae and no treated larvae survived to the adult stage. Larva to adult survival was reduced in chlorantraniliprole, cyantraniliprole, and spinetoram treatments. Larva to adult developmental time and sex ratio were not different among the treatments within a species. Chlorantraniliprole, cyantraniliprole, spinetoram, and lambda-cyhalothrin treatments were highly toxic to adults of both species. C. johnsoni females had lower fecundity than C. carnea females in the control. Fecundity of females was similar in the control and novaluron treatment within each species. However, fertility and egg viability were negatively impacted for both species when females were treated with novaluron. C. carnea females had higher fertility and egg viability than C. johnsoni females in the control. Adults of both species had similar longevity in the control and novaluron treatment and adult longevity was not gender specific. All insecticides tested were toxic to C. johnsoni and C. carnea either at the immature or adult stage or both. Results of this study demonstrate a similarity between C. johnsoni and C. carnea for pesticide toxicity irrespective of their varied geographical distributions
Laboratory Bioassays to Estimate the Lethal and Sublethal Effects of Various Insecticides and Fungicides on Deraeocoris brevis (Hemiptera: Miridae)
This laboratory bioassay focused on lethal and sublethal effects of five insecticides (chlorantraniliprole, cyantraniliprole, spinetoram, novaluron, and lambda-cyhalothrin) and two fungicide treatments (sulfur and a mixture of copper hydroxide and mancozeb) on the predatory mired bug, Deraeocoris brevis (Uhler) (Hemiptera: Miridae) using second instars and adult males and females. Formulated pesticides were tested using concentrations that were equivalent to the high label rate (1x) (high rate) and 1/10th of that amount (0.1x) (low rate) dissolved in 378.5 liters of water. Lambda-cyhalothrin was highly toxic to D. brevis nymphs and adults at both rates, whereas both rates of novaluron were highly toxic to nymphs. Cyantraniliprole, chlorantraniliprole, and novaluron were less toxic to adults, and chlorantraniliprole and spinetoram were less toxic to nymphs. Both rates of spinetoram caused significant mortality to adults. Fecundity of adult females was affected negatively by the high rates of either novaluron or spinetoram, whereas the fertility was affected only by the high rate of novaluron. The high rate of spinetoram reduced survival of nymphs. Adults treated with spinetoram had reduced longevity. Cyantraniliprole caused some mortality to nymphs and affected their survival. Both rates of sulfur were toxic to nymphs and affected emergence to adults. The mixture of copper hydroxide and mancozeb was less toxic to D. brevis. Neither adult longevity nor sex ratio was affected by the fungicides. The r values for D. brevis treated with lambda-cyhalothrin, novaluron, spinetoram, and sulfur were low, indicating that these products may have negative impact on population growth
Large-plot field studies to assess impacts of newer insecticides on non-target arthropods in Western U.S. orchards
The non-target impacts of two reduced risk insecticides, chlorantraniliprole and spinetoram, were evaluated for two years in Oregon pear and California walnut orchards. Experiments were conducted in large replicated plots (approximately 0.25–0.4ha) to assess the impact of these two insecticides on natural enemies of secondary pests when applied against codling moth, Cydia pomonella. Cumulative insect days (CID) of secondary pests and natural enemies were calculated from leaf samples, plant volatile traps, beat trays or cardboard trunk bands. Ratios of natural enemies and prey were also calculated. Results from these field studies demonstrate that applications of chlorantraniliprole can reduce abundance of predatory Neuroptera and that spinetoram negatively impacts parasitic Hymenoptera. However, these trends did not always occur each year. As a percentage among all trials within a crop, there were more treatment differences for natural enemy/prey ratios (50 and 33% for pears and walnut plots, respectively) than for natural enemy CIDs (25 and 13% for pears and walnut plots, respectively). It is likely that unseasonably cool weather during the two years of this study impacted both pest and natural enemy abundance. The intrinsic value of large-plot field studies is discussed
Invasive Allele Spread under Preemptive Competition
We study a discrete spatial model for invasive allele spread in which two
alleles compete preemptively, initially only the "residents" (weaker
competitors) being present. We find that the spread of the advantageous
mutation is well described by homogeneous nucleation; in particular, in large
systems the time-dependent global density of the resident allele is well
approximated by Avrami's law.Comment: Computer Simulation Studies in Condensed Matter Physics XVIII, edited
by D.P. Landau, S.P. Lewis, and H.-B. Schuttler, (Springer, Heidelberg,
Berlin, in press
Using plant volatile traps to develop phenology models for natural enemies: An example using Chrysopa nigricornis (Burmeister) (Neuroptera: Chrysopidae)
A model predicting phenology of adult Chrysopa nigricornis (Burmeister) (Neuroptera: Chrysopidae) in orchards was developed from field (trapping) data supplemented with development data collected under laboratory conditions. Lower and upper thresholds of 10.1°C and 29.9°C, respectively, were estimated from published and unpublished laboratory observations, and were used to develop a phenology model. Season-long field data were collected using white delta traps that had been baited with squalene, a volatile shown previously to be highly attractive to C. nigricornis. The model was developed from data collected in three Washington apple orchards, and was validated using independent data sets collected from apple, sweet cherry, pear, and walnut orchards over a 2–4year period across a much wider geographic region. We found that the mean absolute deviation across all crops and years was 39.7±1.2day-degrees (DD), or 4.4±0.14days. Populations of C. nigricornis from walnut orchards in California emerged 105DD later than those in Oregon and Washington, thus requiring correction of average time of first trap catch in California to synchronize models. The ability to use a single model across multiple crops, different prey species and abundances, and different pesticide regimes demonstrates that phenology models for generalist predators may have broader application to IPM programs in other cropping systems
Predators reduce extinction risk in noisy metapopulations
Background
Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches.
Findings
By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model.
Conclusions
Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level
Using plant volatile traps to estimate the diversity of natural enemy communities in orchard ecosystems
In this study we used sticky traps baited with plant volatile lures to monitor the biodiversity of natural enemies in orchard ecosystems in the western U.S. We compared the diversity of predator genera from season total trap catches in 37 different orchards (apple, cherry, pear and walnut) over a two-year period (2010−2011) using standardized Hill number biodiversity indices and community similarity profiles. For a subset of 23 of these orchards we were also able to monitor the change in biodiversity of predator genera over the full growing season in the different orchard crops. A total of 37,854 individuals from 31 different genera of foliage-active generalist predators were collected from all orchards combined. Mean sample coverage was high (0.98) and richness, diversity and evenness differed between crops in 2010, but not in 2011. There was more than 90% similarity in the richness of predator genera among crops and among orchards within crops, but a greater level of differentiation was observed among orchards when variation in their relative abundance and dominance in the communities was taken into account. There was a consistent rise in predator generic richness and diversity through the season in both years for apple, cherry and pear orchards, but in walnut orchards, a steep rise from March to May was followed by a decline through the rest of the season. In an additional component of the study, the species level similarity of predator and parasitoid communities was analyzed for total season trap catch data from six walnut orchards. The rarefied species richness of parasitoids was much greater than that for predators, although the diversity, evenness and dominance of the parasitoid species varied considerably among orchards. The results from this study highlight the fact that natural enemy communities in orchard ecosystems can be effectively monitored using plant volatile traps, and that these communities are surprisingly diverse despite frequent disturbance from pest management intervention
Spatial heterogeneity promotes coexistence of rock-paper-scissor metacommunities
The rock-paper-scissor game -- which is characterized by three strategies
R,P,S, satisfying the non-transitive relations S excludes P, P excludes R, and
R excludes S -- serves as a simple prototype for studying more complex
non-transitive systems. For well-mixed systems where interactions result in
fitness reductions of the losers exceeding fitness gains of the winners,
classical theory predicts that two strategies go extinct. The effects of
spatial heterogeneity and dispersal rates on this outcome are analyzed using a
general framework for evolutionary games in patchy landscapes. The analysis
reveals that coexistence is determined by the rates at which dominant
strategies invade a landscape occupied by the subordinate strategy (e.g. rock
invades a landscape occupied by scissors) and the rates at which subordinate
strategies get excluded in a landscape occupied by the dominant strategy (e.g.
scissor gets excluded in a landscape occupied by rock). These invasion and
exclusion rates correspond to eigenvalues of the linearized dynamics near
single strategy equilibria. Coexistence occurs when the product of the invasion
rates exceeds the product of the exclusion rates. Provided there is sufficient
spatial variation in payoffs, the analysis identifies a critical dispersal rate
required for regional persistence. For dispersal rates below , the
product of the invasion rates exceed the product of the exclusion rates and the
rock-paper-scissor metacommunities persist regionally despite being extinction
prone locally. For dispersal rates above , the product of the exclusion
rates exceed the product of the invasion rates and the strategies are
extinction prone. These results highlight the delicate interplay between
spatial heterogeneity and dispersal in mediating long-term outcomes for
evolutionary games.Comment: 31pages, 5 figure
Selection on stability across ecological scales
Much of the focus in evolutionary biology has been on the adaptive differentiation among organisms. It is equally important to understand the processes that result in similarities of structure among systems. Here, we discuss examples of similarities occurring at different ecological scales, from predator–prey relations (attack rates and handling times) through communities (food-web structures) to ecosystem properties. Selection among systemic configurations or patterns that differ in their intrinsic stability should lead generally to increased representation of relatively stable structures. Such nonadaptive, but selective processes that shape ecological communities offer an enticing mechanism for generating widely observed similarities, and have sparked new interest in stability properties. This nonadaptive systemic selection operates not in opposition to, but in parallel with, adaptive evolution
New insights to be gained from a Virtual Ecosystem
The myriad interactions among individual plants, animals, microbes and their abiotic environment generate emergent phenomena that will determine the future of life on Earth. Here, we argue that holistic ecosystem models – incorporating key biological domains and feedbacks between biotic and abiotic processes and capable of predicting emergent phenomena – are required if we are to understand the functioning of complex, terrestrial ecosystems in a rapidly changing planet. We argue that holistic ecosystem models will provide a framework for integrating the many approaches used to study ecosystems, including biodiversity science, population and community ecology, soil science, biogeochemistry, hydrology and climate science. Holistic models will provide new insights into the nature and importance of feedbacks that cut across scales of space and time, and that connect ecosystem domains such as microbes with animals or above with below ground. They will allow us to critically examine the origins and maintenance of ecosystem stability, resilience and sustainability through the lens of systems theory, and provide a much-needed boost for conservation and the management of natural environments. We outline our approach to developing a holistic ecosystem model – the Virtual Ecosystem – and argue that while the construction of such complex models is obviously ambitious, it is both feasible and necessary
- …