8 research outputs found

    A diversification relay race from Caribbean-Mesoamerica to the Andes: historical biogeography of Xylophanes hawkmoths

    Get PDF
    The regions of the Andes and Caribbean-Mesoamerica are both hypothesized to be the cradle for many Neotropical lineages, but few studies have fully investigated the dynamics and interactions between Neotropical bioregions. The New World hawkmoth genus Xylophanes is the most taxonomically diverse genus in the Sphingidae, with the highest endemism and richness in the Andes and Caribbean-Mesoamerica. We integrated phylogenomic and DNA barcode data and generated the first time-calibrated tree for this genus, covering 93.8% of the species diversity. We used event-based likelihood ancestral area estimation and biogeographic stochastic mapping to examine the speciation and dispersal dynamics of Xylophanes across bioregions. We also used trait-dependent diversification models to compare speciation and extinction rates of lineages associated with different bioregions. Our results indicate that Xylophanes originated in Caribbean-Mesoamerica in the Late Miocene, and immediately diverged into five major clades. The current species diversity and distribution of Xylophanes can be explained by two consecutive phases. In the first phase, the highest Xylophanes speciation and emigration rates occurred in the Caribbean-Mesoamerica, and the highest immigration rates occurred in the Andes, whereas in the second phase the highest immigration rates were found in Amazonia, and the Andes had the highest speciation and emigration rates.Copyright © 2022, The Authors. This document is the author’s final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it.NHM Repositor

    Asymmetric shallow mantle structure beneath the Hawaiian Swell—evidence from Rayleigh waves recorded by the PLUME network

    Get PDF
    Author Posting. © The Author(s), 2011. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 187 (2011): 1725–1742, doi:10.1111/j.1365-246X.2011.05238.x.We present models of the 3-D shear velocity structure of the lithosphere and asthenosphere beneath the Hawaiian hotspot and surrounding region. The models are derived from long-period Rayleigh-wave phase velocities that were obtained from the analysis of seismic recordings collected during two year-long deployments for the Hawaiian Plume-Lithosphere Undersea Mantle Experiment. For this experiment, broad-band seismic sensors were deployed at nearly 70 seafloor sites as well as 10 sites on the Hawaiian Islands. Our seismic images result from a two-step inversion of path-averaged dispersion curves using the two-station method. The images reveal an asymmetry in shear velocity structure with respect to the island chain, most notably in the lower lithosphere at depths of 60 km and greater, and in the asthenosphere. An elongated, 100-km-wide and 300-km-long low-velocity anomaly reaches to depths of at least 140 km. At depths of 60 km and shallower, the lowest velocities are found near the northern end of the island of Hawaii. No major velocity anomalies are found to the south or southeast of Hawaii, at any depth. The low-velocity anomaly in the asthenosphere is consistent with an excess temperature of 200–250 °C and partial melt at the level of a few percent by volume, if we assume that compositional variations as a result of melt extraction play a minor role. We also image small-scale low-velocity anomalies within the lithosphere that may be associated with the volcanic fields surrounding the Hawaiian Islands.This research was financed by the National Science Foundation under grants OCE-00-02470 and OCE-00-02819. Markee was partly sponsored by a SIO graduate student fellowship

    A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    Get PDF
    Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin similar to 100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants

    Conservation Genetics of the Florida Duskywing Skipper (Ephyriades brunnea)

    No full text
    (Statement of Responsibility) by Amanda Markee(Thesis) Thesis (B.A.) -- New College of Florida, 2019RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE(Bibliography) Includes bibliographical references.This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.Faculty Sponsor: Saarinen, Emil

    Taxonomic revision of the assassin-fly genus Microphontes Londt, 1994 (Insecta, Diptera, Asilidae)

    Get PDF
    The genus Microphontes Londt, 1994 (Diptera: Asilidae: Brachyrhopalinae) is revised. Currently, three species are known from Namibia and western South Africa, i.e. Microphontes megoura Londt, 1994 from north-western South Africa, Microphontes safra Londt, 1994 from Namibia and Microphontes whittingtoni Londt, 1994 from western South Africa. Four new species, Microphontes ericfisheri sp. n. from the Little Karoo of South Africa, Microphontes gaiophanes sp. n. from the Namib desert of Namibia and Microphontes jasonlondti sp. n. and Microphontes kryphios sp. n. from western South Africa, are described. Distribution, occurrence in biodiversity hotspots sensu Conservation International and seasonal incidence are discussed. Descriptions/redescriptions, photographs and identification keys are provided and made openly accessible in data repositories to support future studies of the included taxa. An unusual flight pattern of male Microphontes gaiophanes sp. n. is discussed. A unique morphological feature on tergite 8 of Microphontes females, termed postero-paramedian T8 pores, is described, illustrated and discussed

    Mezcal worm in a bottle: DNA evidence suggests a single moth species

    No full text
    Mezcals are distilled Mexican alcoholic beverages consumed by many people across the globe. One of the most popular mezcals is tequila, but there are other forms of mezcal whose production has been part of Mexican culture since the 17th century. It was not until the 1940–50s when the mezcal worm, also known as the “tequila worm”, was placed inside bottles of non-tequila mezcal before distribution. These bottled larvae increased public attention for mezcal, especially in Asia, Europe, and the United States. Despite these larvae gaining global interest, their identity has largely remained uncertain other than that they are larvae of one of three distantly related holometabolous insects. We sequenced the COI gene from larvae in different kinds of commercially available mezcals. All larval DNA that amplified was identified as the agave redworm moth, Comadia redtenbacheri. Those that did not amplify were also confirmed morphologically to be the larva of this species

    A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    Get PDF
    International audienceButterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants

    Fig. 1 in A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    No full text
    Fig. 1 | Evolutionaryrelationshipsanddiversificationpatternsofbutterflies. Time-calibratedtreeof 2,244 butterflyspeciesbasedon 391 loci and 150 amino acidpartitions.Branchesshowdistinctchangesindiversification (circles) asestimatedbyclade-specificmodels.Lettersatnodesrefertocladeswith significantrateshifts (seesection 6 of Supplementary Results).Colouredlines intheouterringbesidetipsindicateassociationwithoneof the 13 hostmodules (seesection 17 of Extended Online Methods).Blacklinesinthehostassociation ringindicatespecieswithoutdata,andasterisksdenotenon-monophyletic subfamilies.Supplementary Fig. 1 showsthistreewithvisiblespeciesnamesand agesforallnodes.Published as part of <i>Kawahara, Akito Y., Storer, Caroline, Carvalho, Ana Paula S., Plotkin, David M., Condamine, Fabien L., Braga, Mariana P., Ellis, Emily A., St Laurent, Ryan A., Li, Xuankun, Barve, Vijay, Cai, Liming, Earl, Chandra, Frandsen, Paul B., Owens, Hannah L., Valencia-Montoya, Wendy A., Aduse-Poku, Kwaku, Toussaint, Emmanuel F. A., Dexter, Kelly M., Doleck, Tenzing, Markee, Amanda, Messcher, Rebeccah, Nguyen, Y-Lan, Badon, Jade Aster T., Benítez, Hugo A., Braby, Michael F., Buenavente, Perry A. C., Chan, Wei-Ping, Collins, Steve C., Rabideau Childers, Richard A., Dankowicz, Even, Eastwood, Rod, Fric, Zdenek F., Gott, Riley J., Hall, Jason P. W., Hallwachs, Winnie, Hardy, Nate B., Sipe, Rachel L. Hawkins, Heath, Alan, Hinolan, Jomar D., Homziak, Nicholas T., Hsu, Yu-Feng, Inayoshi, Yutaka, Itliong, Micael G. A., Janzen, Daniel H., Kitching, Ian J., Kunte, Krushnamegh, Lamas, Gerardo, Landis, Michael J., Larsen, Elise A., Larsen, Torben B., Leong, Jing V., Lukhtanov, Vladimir, Maier, Crystal A., Martinez, Jose I., Martins, Dino J., Maruyama, Kiyoshi, Maunsell, Sarah C., Mega, Nicolás Oliveira, Monastyrskii, Alexander, Morais, Ana B. B., Müller, Chris J., Naive, Mark Arcebal K., Nielsen, Gregory, Padrón, Pablo Sebastián, Peggie, Djunijanti, Romanowski, Helena Piccoli, Sáfián, Szabolcs, Saito, Motoki, Schröder, Stefan, Shirey, Vaughn, Soltis, Doug, Soltis, Pamela, Sourakov, Andrei, Talavera, Gerard, Vila, Roger, Vlasanek, Petr, Wang, Houshuai, Warren, Andrew D., Willmott, Keith R., Yago, Masaya, Jetz, Walter, Jarzyna, Marta A., Breinholt, Jesse W., Espeland, Marianne, Ries, Leslie, Guralnick, Robert P., Pierce, Naomi E. & Lohman, David J., 2023, A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins, pp. 903-913 in Nature Ecology & Evolution 7 (6)</i> on page 904, DOI: 10.1038/s41559-023-02041-9, <a href="http://zenodo.org/record/7963518">http://zenodo.org/record/7963518</a&gt
    corecore