117 research outputs found

    New Evidence for P-gp-Mediated Export of Amyloid-β PEPTIDES in Molecular, Blood-Brain Barrier and Neuronal Models

    Get PDF
    Defective clearance mechanisms lead to the accumulation of amyloid-beta (Aβ) peptides in the Alzheimer’s brain. Though predominantly generated in neurons, little is known about how these hydrophobic, aggregation-prone, and tightly membrane-associated peptides exit into the extracellular space where they deposit and propagate neurotoxicity. The ability for P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, to export Aβ across the blood-brain barrier (BBB) has previously been reported. However, controversies surrounding the P-gp–Aβ interaction persist. Here, molecular data affirm that both Aβ40 and Aβ42 peptide isoforms directly interact with and are substrates of P-gp. This was reinforced ex vivo by the inhibition of Aβ42 transport in brain capillaries from P-gp-knockout mice. Moreover, we explored whether P-gp could exert the same role in neurons. Comparison between non-neuronal CHO-APP and human neuroblastoma SK-N-SH cells revealed that P-gp is expressed and active in both cell types. Inhibiting P-gp activity using verapamil and nicardipine impaired Aβ40 and Aβ42 secretion from both cell types, as determined by ELISA. Collectively, these findings implicate P-gp in Aβ export from neurons, as well as across the BBB endothelium, and suggest that restoring or enhancing P-gp function could be a viable therapeutic approach for removing excess Aβ out of the brain in Alzheimer’s disease

    New evidence for p-gp-mediated export of amyloid-β peptides in molecular, blood-brain barrier and neuronal models

    Get PDF
    Defective clearance mechanisms lead to the accumulation of amyloid-beta (Aβ) peptides in the Alzheimer's brain. Though predominantly generated in neurons, little is known about how these hydrophobic, aggregation-prone, and tightly membrane-associated peptides exit into the extracellular space where they deposit and propagate neurotoxicity. The ability for P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, to export Aβ across the blood-brain barrier (BBB) has previously been reported. However, controversies surrounding the P-gp–Aβ interaction persist. Here, molecular data affirm that both Aβ40 and Aβ42 peptide isoforms directly interact with and are substrates of P-gp. This was reinforced ex vivo by the inhibition of Aβ42 transport in brain capillaries from P-gp-knockout mice. Moreover, we explored whether P-gp could exert the same role in neurons. Comparison between non-neuronal CHO-APP and human neuroblastoma SK-N-SH cells revealed that P-gp is expressed and active in both cell types. Inhibiting P-gp activity using verapamil and nicardipine impaired Aβ40 and Aβ42 secretion from both cell types, as determined by ELISA. Collectively, these findings implicate P-gp in Aβ export from neurons, as well as across the BBB endothelium, and suggest that restoring or enhancing P-gp function could be a viable therapeutic approach for removing excess Aβ out of the brain in Alzheimer's disease.This research was funded by a seed grant from the University of Sydney, Australia. A.B.C. and A.Y. were recipients of Australian Government scholarships. A.M.S.H. was supported by grant number 2R01AG039621 from the National Institute on Aging. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Aging or the National Institutes of Health

    Comprehensive Analysis of the Immunogenomics of Triple-Negative Breast Cancer Brain Metastases From LCCC1419

    Get PDF
    BackgroundTriple negative breast cancer (TNBC) is an aggressive variant of breast cancer that lacks the expression of estrogen and progesterone receptors (ER and PR) and HER2. Nearly 50% of patients with advanced TNBC will develop brain metastases (BrM), commonly with progressive extracranial disease. Immunotherapy has shown promise in the treatment of advanced TNBC; however, the immune contexture of BrM remains largely unknown. We conducted a comprehensive analysis of TNBC BrM and matched primary tumors to characterize the genomic and immune landscape of TNBC BrM to inform the development of immunotherapy strategies in this aggressive disease.MethodsWhole-exome sequencing (WES) and RNA sequencing were conducted on formalin-fixed, paraffin-embedded samples of BrM and primary tumors of patients with clinical TNBC (n = 25, n = 9 matched pairs) from the LCCC1419 biobank at UNC—Chapel Hill. Matched blood was analyzed by DNA sequencing as a comparison for tumor WES for the identification of somatic variants. A comprehensive genomics assessment, including mutational and copy number alteration analyses, neoantigen prediction, and transcriptomic analysis of the tumor immune microenvironment were performed.ResultsPrimary and BrM tissues were confirmed as TNBC (23/25 primaries, 16/17 BrM) by immunohistochemistry and of the basal intrinsic subtype (13/15 primaries and 16/19 BrM) by PAM50. Compared to primary tumors, BrM demonstrated a higher tumor mutational burden. TP53 was the most frequently mutated gene and was altered in 50% of the samples. Neoantigen prediction showed elevated cancer testis antigen- and endogenous retrovirus-derived MHC class I-binding peptides in both primary tumors and BrM and predicted that single-nucleotide variant (SNV)-derived peptides were significantly higher in BrM. BrM demonstrated a reduced immune gene signature expression, although a signature associated with fibroblast-associated wound healing was elevated in BrM. Metrics of T and B cell receptor diversity were also reduced in BrM.ConclusionsBrM harbored higher mutational burden and SNV-derived neoantigen expression along with reduced immune gene signature expression relative to primary TNBC. Immune signatures correlated with improved survival, including T cell signatures. Further research will expand these findings to other breast cancer subtypes in the same biobank. Exploration of immunomodulatory approaches including vaccine applications and immune checkpoint inhibition to enhance anti-tumor immunity in TNBC BrM is warranted

    Genome-Wide Interaction Analysis with DASH Diet Score Identified Novel Loci for Systolic Blood Pressure

    Get PDF
    OBJECTIVE: We examined interactions between genotype and a Dietary Approaches to Stop Hypertension (DASH) diet score in relation to systolic blood pressure (SBP).METHODS: We analyzed up to 9,420,585 biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European population-specific and cross-population meta-analyses.RESULTS: We identified three loci in European-specific analyses and an additional four loci in cross-population analyses at P for interaction &lt; 5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where the interaction effect size was 0.42±0.09 mm Hg (P for interaction = 9.4e-7) and 0.20±0.06 mm Hg (P for interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P = 4e-273) and cis-DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by SNPs potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. CONCLUSION: We demonstrated gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations are needed to validate our findings.</p

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease:results from the IMmunogenicity to Second Anti-TNF therapy (IMSAT) therapeutic drug monitoring study

    Get PDF
    BACKGROUND: Anti-drug antibodies are associated with treatment failure to anti-TNF agents in patients with inflammatory bowel disease (IBD).AIM: To assess whether immunogenicity to a patient's first anti-TNF agent would be associated with immunogenicity to the second, irrespective of drug sequence METHODS: We conducted a UK-wide, multicentre, retrospective cohort study to report rates of immunogenicity and treatment failure of second anti-TNF therapies in 1058 patients with IBD who underwent therapeutic drug monitoring for both infliximab and adalimumab. The primary outcome was immunogenicity to the second anti-TNF agent, defined at any timepoint as an anti-TNF antibody concentration ≥9 AU/ml for infliximab and ≥6 AU/ml for adalimumab.RESULTS: In patients treated with infliximab and then adalimumab, those who developed antibodies to infliximab were more likely to develop antibodies to adalimumab, than patients who did not develop antibodies to infliximab (OR 1.99, 95%CI 1.27-3.20, p = 0.002). Similarly, in patients treated with adalimumab and then infliximab, immunogenicity to adalimumab was associated with subsequent immunogenicity to infliximab (OR 2.63, 95%CI 1.46-4.80, p &lt; 0.001). For each 10-fold increase in anti-infliximab and anti-adalimumab antibody concentration, the odds of subsequently developing antibodies to adalimumab and infliximab increased by 1.73 (95% CI 1.38-2.17, p &lt; 0.001) and 1.99 (95%CI 1.34-2.99, p &lt; 0.001), respectively. Patients who developed immunogenicity with undetectable drug levels to infliximab were more likely to develop immunogenicity with undetectable drug levels to adalimumab (OR 2.37, 95% CI 1.39-4.19, p &lt; 0.001). Commencing an immunomodulator at the time of switching to the second anti-TNF was associated with improved drug persistence in patients with immunogenic, but not pharmacodynamic failure.CONCLUSION: Irrespective of drug sequence, immunogenicity to the first anti-TNF agent was associated with immunogenicity to the second, which was mitigated by the introduction of an immunomodulator in patients with immunogenic, but not pharmacodynamic treatment failure

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease: results from the IMmunogenicity to Second Anti-TNF Therapy (IMSAT) therapeutic drug monitoring study

    Get PDF

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease:results from the IMmunogenicity to Second Anti-TNF therapy (IMSAT) therapeutic drug monitoring study

    Get PDF
    BACKGROUND: Anti-drug antibodies are associated with treatment failure to anti-TNF agents in patients with inflammatory bowel disease (IBD).AIM: To assess whether immunogenicity to a patient's first anti-TNF agent would be associated with immunogenicity to the second, irrespective of drug sequence METHODS: We conducted a UK-wide, multicentre, retrospective cohort study to report rates of immunogenicity and treatment failure of second anti-TNF therapies in 1058 patients with IBD who underwent therapeutic drug monitoring for both infliximab and adalimumab. The primary outcome was immunogenicity to the second anti-TNF agent, defined at any timepoint as an anti-TNF antibody concentration ≥9 AU/ml for infliximab and ≥6 AU/ml for adalimumab.RESULTS: In patients treated with infliximab and then adalimumab, those who developed antibodies to infliximab were more likely to develop antibodies to adalimumab, than patients who did not develop antibodies to infliximab (OR 1.99, 95%CI 1.27-3.20, p = 0.002). Similarly, in patients treated with adalimumab and then infliximab, immunogenicity to adalimumab was associated with subsequent immunogenicity to infliximab (OR 2.63, 95%CI 1.46-4.80, p &lt; 0.001). For each 10-fold increase in anti-infliximab and anti-adalimumab antibody concentration, the odds of subsequently developing antibodies to adalimumab and infliximab increased by 1.73 (95% CI 1.38-2.17, p &lt; 0.001) and 1.99 (95%CI 1.34-2.99, p &lt; 0.001), respectively. Patients who developed immunogenicity with undetectable drug levels to infliximab were more likely to develop immunogenicity with undetectable drug levels to adalimumab (OR 2.37, 95% CI 1.39-4.19, p &lt; 0.001). Commencing an immunomodulator at the time of switching to the second anti-TNF was associated with improved drug persistence in patients with immunogenic, but not pharmacodynamic failure.CONCLUSION: Irrespective of drug sequence, immunogenicity to the first anti-TNF agent was associated with immunogenicity to the second, which was mitigated by the introduction of an immunomodulator in patients with immunogenic, but not pharmacodynamic treatment failure

    Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    Get PDF
    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZV systemic dissemination in humans

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P &lt; 0.001) and PARP inhibitor therapy (P &lt; 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P &lt; 0.018) and WEE1 inhibitor (P &lt; 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P &lt; 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy
    corecore