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Background: Triple negative breast cancer (TNBC) is an aggressive variant of breast
cancer that lacks the expression of estrogen and progesterone receptors (ER and PR) and
HER2. Nearly 50% of patients with advanced TNBC will develop brain metastases (BrM),
commonly with progressive extracranial disease. Immunotherapy has shown promise in
the treatment of advanced TNBC; however, the immune contexture of BrM remains
largely unknown. We conducted a comprehensive analysis of TNBC BrM and matched
primary tumors to characterize the genomic and immune landscape of TNBC BrM to
inform the development of immunotherapy strategies in this aggressive disease.

Methods: Whole-exome sequencing (WES) and RNA sequencing were conducted on
formalin-fixed, paraffin-embedded samples of BrM and primary tumors of patients with
clinical TNBC (n = 25, n = 9 matched pairs) from the LCCC1419 biobank at UNC—Chapel
Hill. Matched blood was analyzed by DNA sequencing as a comparison for tumor WES for
the identification of somatic variants. A comprehensive genomics assessment, including
mutational and copy number alteration analyses, neoantigen prediction, and
transcriptomic analysis of the tumor immune microenvironment were performed.

Results: Primary and BrM tissues were confirmed as TNBC (23/25 primaries, 16/17 BrM)
by immunohistochemistry and of the basal intrinsic subtype (13/15 primaries and 16/19
BrM) by PAM50. Compared to primary tumors, BrM demonstrated a higher tumor
mutational burden. TP53 was the most frequently mutated gene and was altered in
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50% of the samples. Neoantigen prediction showed elevated cancer testis antigen- and
endogenous retrovirus-derived MHC class I-binding peptides in both primary tumors and
BrM and predicted that single-nucleotide variant (SNV)-derived peptides were significantly
higher in BrM. BrM demonstrated a reduced immune gene signature expression, although
a signature associated with fibroblast-associated wound healing was elevated in BrM.
Metrics of T and B cell receptor diversity were also reduced in BrM.

Conclusions: BrM harbored higher mutational burden and SNV-derived neoantigen
expression along with reduced immune gene signature expression relative to primary
TNBC. Immune signatures correlated with improved survival, including T cell
signatures. Further research will expand these findings to other breast cancer
subtypes in the same biobank. Exploration of immunomodulatory approaches
including vaccine applications and immune checkpoint inhibition to enhance anti-
tumor immunity in TNBC BrM is warranted.
Keywords: triple-negative breast cancer, brain metastases, immunogenomics, whole-exome sequencing, mRNA
sequencing, biobank
INTRODUCTION

Triple-negative breast cancer (TNBC) lacks the expression of
hormone receptors estrogen (ER) and progesterone (PR) as well
as human epidermal growth factor receptor 2 (HER2). TNBC is
also the most aggressive subtype of breast cancer, with a
predilection for brain metastases; up to 50% of patients with
metastatic TNBC will develop brain metastases (BrM) during
their disease course (1). Patients with TNBC BrM face a poor
prognosis with a median survival following diagnosis of less than
6 months (2). Despite progress in the treatment of ER+ and
HER2+ breast cancer BrM with the advent of brain-penetrant
targeted therapies, the prognosis for TNBC BrM remains largely
unchanged over the past decade (3). Thus, studies to better
understand the biology of TNBC BrM to identify new
therapeutic targets are needed.

Previous studies have conducted sequencing of primary and
metastatic tissues, including BrM, frommelanoma (4), lung cancer
(5), breast cancer (6–8), and multiple solid tumor types (9). A
seminal work by Brastianos et al. demonstrated that some solid
tumors (including BrM) undergo branched evolution during the
metastatic process. These studies have led to a growing
appreciation that BrM can be biologically different from not just
their primary tumors but also extracranial metastases, including
differential acquisition or loss of targetable alterations. Breast
cancer brain metastasis (BCBrM) have demonstrated mutations
and/or copy number alterations in clinically targetable genes and
pathways such as HER2 (6, 7, 9), BRAF (8), PI3K/Akt (9), CDK
(6), ATM (8), and CRYAB (10) not seen in primary tumors. BrM
can also be metabolically different from primaries, with increased
oxidative phosphorylation (4). Preclinical studies have
demonstrated that these targets can alter the brain metastatic
potential and/or growth of BrM in breast cancer models (4, 11–
13). These findings have led to the first genomically guided clinical
trial in BrM to match alterations present in BrM to an appropriate
brain-penetrant inhibitor (NCT03994796).
2

While these and other prior studies have made significant
progress in the genomic characterization of BrM in recent years,
no studies have yet focused exclusively on TNBC BrM
specifically, and few studies have looked at comprehensive
RNA and DNA sequencing-derived features of the tumor
immune microenvironment. Using the LCCC1419 Biobank of
metastatic breast cancer samples, we have collected and analyzed
BrM, matched primaries, and normal tissue from 25 patients
with TNBC through both whole-exome sequencing (WES) and
mRNA sequencing. We report the somatic mutational landscape
of TNBC BrM compared to primary tumors and implement a
comprehensive neoantigen prediction pipeline to elucidate
potentially immunogenic peptides arising from traditional and
alternative neoantigen sources. Utilizing mRNA gene expression,
we evaluated the tumor immune microenvironment of TNBC
BrM relative to primary tumors and correlate these features with
overall survival. To our knowledge, this study represents the
largest evaluation of TNBC BrM throughWES and RNA-seq and
is the first to analyze gene expression and immunogenomics in
addition to the mutational landscape.
MATERIALS AND METHODS

Patient Consent and Tissue Collection
Archival formalin-fixed, paraffin embedded (FFPE) tumor
tissues were obtained from patients with clinically determined
triple-negative breast cancer (TNBC) based on either a primary
or metastatic site, with known metastasis to the brain. The
patients consented to participation in either the UNC Health
Registry (UNC IRB 09-0605), opened on 04/16/2009 and
consented between 11/2014 and 06/2016, or to a clinically
annotated biobank study at the University of North Carolina at
Chapel Hill under an Institutional Review Board (IRB)-approved
protocol (LCCC1419) which opened on 10/31/2014 and
consented from 11/2014 to 11/2018. Brain metastases tissues
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were available from n = 19 patients (n = 19 with RNA, n = 17
with DNA), while primary tumor tissue was available from n =
16 patients (n = 15 with RNA, n = 13 with DNA). Matched whole
blood samples were available for n = 22 patients (DNA). Of these
cases, n = 9 included matched RNA primary TNBC and BrM
tissue pairs from the same patient, and n = 6 had matched DNA
triplet samples (primary, BrM, and blood), all n = 6 of which also
had RNA for both primary and BrM samples.

DNA Whole-Exome Sequencing and
Variant Calling
FFPE tumor/tissue blocks and normal fresh frozen blood
samples were collected and inventoried through honest brokers
in accordance with IRB standards through the UNC Health
Registry. UNC patient samples were inventoried through UNC
Surgical Pathology Core (SP), while patient samples from outside
UNC were inventoried through UNC Tissue Procurement
Facility. Tissue blocks were sectioned by UNC Translational
Pathology Laboratory (TPL). Twenty-two sections were made at
a time: two 5-mm sections at the beginning and end of sectioning
for pathologist review and 20 10-mm sections for DNA/RNA
isolation on glass slides. TPL pathologists reviewed the samples,
circling areas with more than 50% tumor mass for DNA/RNA
isolation. When required, the process was repeated to collect
more DNA/RNA. UNC BioSpecimen Processing Facility
performed all DNA/RNA isolations. DNA from tumor-
enriched cores were extracted using the Maxwell 16 FFPE
Tissue LEV DNA Purification Kit. DNA was exome-captured
and amplified with Agilent SureSelect XT (G9611B) and capture
library (5190-8881). WES was performed using the Illumina
HiSeq 2500 or NextSeq 500 platform with multiple samples per
lane using 2 × 100 paired-end chemistry. RNA was isolated from
the same sections with QIAGEN AllPrep FFPE, and libraries
were prepared with Illumina TruSeq Stranded with RiboZero
Gold (RS-122-2301). mRNA-Seq libraries were run at 2 samples
per lane on an Illumina HiSeq2500 sequencer in high-output
mode using 2 × 50 paired-end chemistry.

WES was performed on FFPE tumor tissue, with peripheral
blood mononuclear cells serving as a matched normal. Library
preparation was performed with the SureSelect XT Human All
Exon V6 + UTR kit (Agilent, Santa Clara, CA, USA), and pooled
samples were sequenced on the HiSeq2500 platform (Illumina).
The resulting somatic and germline WES sequencing files were
aligned to Hg38 using bwa (v0.7.17), sorted, and indexed, and
duplicates were marked using biobambam2 (v2.0.87). BAMs
were re-aligned with Abra2 (v2.22), followed by somatic and
germline variant detection with Strelka2 (v2.9.10), Cadabra
(from Abra2 v2.22), and Mutect2 (GATK v4.1.4.0). The
capture of exonic sequences was verified using the Picard
(v2.21.1) CollectHsMetrics tool, and the quality of sequencing
data was verified using FastQC (v0.11.8) and the Picard suite’s
CollectAlignmentSummaryMetrics, CollectInsertSizeMetrics,
QualityScoreDistribution, and MeanQualityByCycle tools.
Variants with matched normals were filtered by the following
criteria: protein-coding mutations only, Cadabra indel quality
>10.5, Mutect2 indel quality >6.8, or (single-nucleotide variant)
Frontiers in Oncology | www.frontiersin.org 3
SNV quality >9.2, Strelka2 indel quality >15.2 or SNV quality
>19.7. Additionally, Cadabra indels with quality <35 required a
supporting high-quality call from either Strelka2 or Mutect2, and
Strelka2 calls with SomaticEVS <20 similarly required a
matching call from either Mutect2 or Cadabra. Variants for
tumor-only samples were detected by Mutect2 and filtered to
retain the protein-coding mutations. The remaining variants
required at least 5 supporting reads and a minimum read
depth of 40 or 10 supporting reads and a minimum read depth
of 80 if MAF <5%. The variants with a MAF >5% in normal
tissue were dropped, as were the variants appearing at rates
above 1% in any subpopulation in either GnomAD or 1000
Genomes databases. To counter FFPE artifacts, C>T and G>A
substitutions required a minimum MAF of 10%. Tumor
mutational burden (TMB) was calculated from small indels
and substitutions identified by WES and divided by the
megabases adequately covered by sequencing reads. Whole-
exome sequencing data for both tumor and germline was
available for 28 samples (representing 22 unique patients) at
baseline. Tumor-only whole-exome sequencing data—without
matched normal—was available for a further 2 samples
(representing 2 patients), for a total of 30 samples across 24
patients with WES data. Oncoplots were created in R using
maftools v2.10.0, with variant genes limited to those implicated
in breast cancer from the COSMIC Cancer Gene Census Tier 1
list (https://cancer.sanger.ac.uk/cosmic).

Copy Number Variation and Subclonal
Heterogeneity Analysis
LCCC1419 patients with matched DNA normal and DNA tumor
samples (n = 22) were processed through trim galore v. 0.6.2. The
resulting trimmed FASTQs were aligned to the human reference
genome FASTA file Homo_sapiens_assembly38.fasta (from the
GATK hg38 file bundle) with the bwa mem command from
BWA v. 0.7.17 with default parameters. The resulting SAM files
were sorted, converted to BAM files, and indexed using
SAMtools v. 1.9. The matched samples from each patient were
then processed through the Sequenza v. 3.0.0 workflow
(gc_wiggle with window size of 50 basepairs, bam2seqz,
s eqz_b inn ing , s equenza . ex t rac t , s equenza .fi t , and
sequenza.results all with default parameters). The resulting
patient-level segment files were then modified to conform to
the format required by GISTIC. This conversion was performed
with standard BASH scripting and included a log2(x) - 1
transformation of Sequenza’s raw depth ratio value for
GISTIC. The resulting modified segment files were then
concatenated across samples and ran through GISTIC v. 2.0.23
using the hg38.UCSC.add_miR.160920.refgene.mat file
(from docker://shixiangwang/gistic:1.2) for the -refgene
parameter. CNVKit was run using the “batch” mode for
primary tumors and BrM separately (with their matched
normal samples, respectively). All normal samples within each
group were pooled together to generate a pan-sample normal
control. Agilent’s SureSelect Human All Exon V6+UTRs probed
bed file was provided for the –targets parameter, a standard hg38
refFlat.txt file was provided for annotations, and a k50 umap
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mappability BED file was provided for the –access parameter.
Outputs from Sequenza were paired with each patient’s
corresponding MuTect2 somatic variant calls to create
PyClone-VI input files using Sequenza copy number
information and MuTect2’s variant read support information.
Files were created for each primary tumor and BrM sample
separately, and paired input files were created for patients that
had both primary tumor and BrM data available. The resulting
files were run through PyClone-VI using default parameters.

Neoantigen Prediction Using Genomics
Data
Tumor antigens were predicted from a comprehensive set of
genomic sources (single-nucleotide variations, insertions/
deletions, gene fusions, alternative splice variants, cancer testis
antigens, overexpressed self-antigens, and viral and endogenous
retroviral antigens) using methods developed by our group and
implementations of methods developed by others (14–22).
Briefly, whole-exome sequencing was used to identify tumor-
specific genetic variants (single-nucleotide variations, insertions/
deletions, gene fusions), and RNA sequencing was used to
confirm the expression of these variants. RNA sequencing data
alone were used to evaluate for expressed alternative splice
variants, viral and endogenous retroviral antigens. Cancer testis
antigens/overexpressed self-antigens were evaluated using
RNAseq data, but WES data was used to incorporate germline
variants. RNA sequencing data was also used to infer tumor
MHC haplotypes via HLAProfiler, the most accurate tool for
MHC haplotype inference (23). Peptide fragments generated
in silico are evaluated for predicted binding affinity to tumor
MHC alleles using NetMHCpan-4.1 (24). Peptides with
predicted binding affinity <500 nM were considered positive
binders (e.g., potential tumor antigens), while peptides with
predicted binding affinity <50 nM considered strong binders
and more likely to be tumor antigens (25).

RNA-Seq Data Processing
RNA-Seq Paired FASTQs were run through trim galore v. 0.6.2
using –paired parameter. STAR v. 2.7.0f was used to index the
reference genome Homo_sapiens.GRCh38.dna_sm.primary
assembly.fa from GATK and to map trimmed reads to reference
(using parameters –quantMode TranscriptomeSAM –
outSAMtype BAM SortedByCoordinate –sjdbGTFfi le
Homo_sapiens.GRCh38.100.gtf). Gffread v. 0.11.7 was used to
create a transcriptome reference using the reference genome and
the gtf file Homo_sapiens.GRCh38.100.gtf. The “toTranscriptome”
alignments from STAR were used with Salmon v. 1.1.0 using
“salmon quant -l a”. Sample quality was assessed using MultiQC
v1.9 with Picard CollectRnaSeqMetrics, and samples with less than
20 M coding reads were excluded as this threshold has been found
to approximate the minimal sequencing depth to achieve
equivalent detection to microarrays (26). Counts were log2-
transformed and the upper quartile normalized for further
downstream analysis. Some patients’ tumors were sequenced
multiple times (technical replicates), and in such cases, gene-level
expression values were averaged across technical replicates.
Frontiers in Oncology | www.frontiersin.org 4
Intrinsic Subtype Analysis
Intrinsic subtype analysis was performed according to the
methods described in Picornell et al (27). The R package
heatmaply (28) was used for heat map visualization with
hierarchical clustering based on average linkage.

Immune Gene Signature
Expression Analysis
Thirty-two immune gene signatures were chosen to reflect the
diversity of tumor-infiltrating immune cell populations and to
minimize redundancy (refer to associated.gmt file in the
Supplementary Material). The binfotron R package (29) was
used to compute the differential gene expression [along with the
DESeq2 dependency (30)], produce a volcano plot, and calculate
immune signature metagene scores (median log2 expression
values) for downstream analysis. ssGSEA was performed using
the R packages GSVA and GSEABase (31, 32). CIBERSORTx
immune cell fraction imputation using the LM22 matrix was also
performed (33).

TCR/BCR Repertoire Analysis
Immune chain inference was performed on RNA-Seq samples
via MiXCR 2.1.2 for TCR chains (34) and V’DJer 0.12 (35) for
BCR chains. The consensus BCR contigs from V’DJer were
quantified using Salmon 0.13.11 (36). Repertoire diversity was
calculated using a model-based approach, which improves
estimations of diversity in part by minimizing known sources
of estimate bias (37).

Survival Analyses
Multivariable Cox proportional hazards modeling was
performed using the survival (38) R package. The model
included cancer stage, age at primary tumor diagnosis, and
race. Time from initial diagnosis, from diagnosis of any
metastasis regardless of anatomical location, or from diagnosis
of BrM to an event was interrogated. Hazard ratios and 95%
confidence intervals were returned for gene signature covariates
and visualized using the forestplot (39) R package.

Accession Numbers and Data Sharing
Sample information for RNA-seq and DNA-seq fastQ runs,
including the clinical information, were uploaded to the
NCBI’s dbGaP repository (accession no. phs002457.v1.p1)
and SRA.
RESULTS

Patient Cohort Characteristics
Tissues and blood from patients with clinical TNBC (n = 25)
were included in this analysis, including BrM tissues (n = 19),
primary breast tumors (n = 17), and whole blood samples (n =
22). The specimen numbers by tissue type and analysis (IHC,
RNA, or DNA) are outlined in Supplementary Figure S1.
Patient demographics are included in Table 1, with individual
clinical–pathological characteristics and specimen availability
July 2022 | Volume 12 | Article 818693
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presented in Supplementary Table S1. The majority of patients
were Caucasian (n = 17, 68%), with African American, Asian,
and other ethnicities represented [n = 6 (24%), n = 1 (4%), and
n = 1 (4%), respectively]. One male was included in the cohort.
Median age at breast cancer diagnosis was 46.7 years (range, 29–
70.9), while median age at BrM diagnosis was 51.5 years (range,
31.7–72). The majority (n = 12, 48%) of patients were initially
diagnosed with stage II disease prior to recurrence; a minority
(n = 2, 8%) were diagnosed with de novo stage IV TNBC. In
addition to BrM, other sites of disease included the liver (n = 8,
32%), bone (n = 15, 60%), lung (n = 16, 64%), and non-local
lymph nodes (n = 18, 72%). Ten patients (40%) were initially
diagnosed with a solitary BrM, while 7 patients were diagnosed
with 5 or greater BrM (28%). BrM was supratentorial in n = 23
(92%) patients and infratentorial in n = 13 (52%) patients. The
median progression-free survival (e.g., time from primary TNBC
diagnosis to the diagnosis of any metastasis) was 1.8 years (range,
0–19.5). The median OS from primary TNBC diagnosis was 3.7
years (range, 0.9–19.8), while the median OS from BrM diagnosis
was 1.2 years (range, 0 – 8.9).
Frontiers in Oncology | www.frontiersin.org 5
Intrinsic Subtype Classification of Primary
TNBC and Brain Metastases
Intrinsic molecular subtype analysis using RNAseq data
illustrated that the majority of clinically determined TNBC
samples were of the basal subtype (Supplementary Figure S2).
Of the BrM (n = 19), 16 were classified as basal (84%), with
normal-like (n = 2) and HER2-enriched (n = 1) comprising a
small fraction of the cohort. Similarly, primary tumors (n = 15)
were predominantly classified as basal (n = 13, 87%), with the
remaining tumors being normal-like (n = 2). Notably, the 4
samples that were called normal-like by PAM50 analysis had a
basal subtype as the second highest identity probability. There
were 2 cases with discordant receptor classification between
primary tumor and BrM by immunohistochemistry (n = 1 ER
+/PR+/HER2- Luminal A primary converted to a TNBC BrM,
and n = 1 TNBC primary converted to an ER+/PR+/HER2-
Luminal A BrM) (Table 1; Supplementary Figure S2). Despite
the potential subtype switching between primary and BrM, these
samples were included in the downstream analyses.

Mutational, Somatic Copy Number
Alteration, and Subclonal Analyses of
Primary TNBC Tumors and
Brain Metastases
First, we analyzed the tumor mutational burden (TMB) of
primary tumors (n = 13) relative to BrM (n = 17) using WES.
On average, BrM harbored a greater mutational load than
primary tumors (median 3.33 vs. 1.78 mutations/Mb,
respectively, p < 0.05; Figure 1A). Upon analysis of matched
primary-BrM WES pairs (n = 6), however, there was no
significant difference between tumor location and TMB
(median 2.80 vs. 1.88 mutations/Mb, respectively, p = 0.69;
Figure 1B). An analysis of shared mutations within matched
pairs revealed varying degrees of mutational conservation
between anatomical locations (Figure 1C). The degree of
variant sharing between matched pairs (Figure 1C) was
generally greater than the degree of mutations shared between
primaries and BrM globally (Supplementary Figure S3),
highlighting interpatient tumor heterogeneity and mutational
divergence. We assessed whether a survival benefit was conferred
by increasing TMB, as TMB has been considered a proxy for
neoantigen burden (40, 41). There was no significant association
between TMB and survival (p = 0.07) from the time of primary
TNBC diagnosis in the context of a model that included standard
clinicopathological features (age at diagnosis of primary tumor,
stage, and race) (Supplementary Figure S4). Next, we examined
the mutational spectrum of genes with known associations to
breast cancer development (42). We found that these genes were
altered in 70% of combined primary and BrM samples, with
TP53 being the most commonly mutated gene (mutated in 50%
of samples, n = 15), in accordance with its known relevance to
TNBC (43) (Figure 1D). The next most frequently altered genes
wereMAP3K13 and PIK3CA, which were mutated in 13% (n = 4)
and 10% (n = 3) of samples, respectively; all other genes were
mutated less frequently, occurring in 7% or less (n ≤ 2) of
samples (Figure 1D).
TABLE 1 | Relevant demographic, subtype, and clinical diagnostic information
for the LCCC1419 TNBC cohort.

Characteristics Number (%)

Demographic information
Means of enrollment (n = 25)
LCCC 1419 consent
Health Registry consent
Waiver of consent

6 (24%)
16 (64%)
3 (12%)

Race (n = 25)
African American
Asian
Caucasian
Other

6 (24%)
1 (4%)

17 (68%)
1 (4%)

Ethnicity (n = 25)
Hispanic
Not Hispanic
Unknown

2 (8%)
22 (88%)
1 (4%)

Sex (n = 25)
Female
Male

24 (96%)
1 (4%)

Smoking status (n = 25)
Never smoker
Current smoker
Former smoker

14 (56%)
4 (1%)
7 (28%)

Subtype information
Subtypes by primary resection (n = 25)
Luminal A (ER/PR+, HER2-)
Luminal B (ER/PR+, HER2+)
HER2 (ER-, PR-, HER2+)
TNBC (ER-, PR-, HER2-)
Mixed (two primaries tested with different results)
Unknown

1 (4%)
0 (0%)
0 (0%)

23 (92%)
0 (0%)
1 (4%)

Subtypes by CNS resection (n = 21)
Luminal A (ER/PR+, HER2-)
Luminal B (ER/PR+, HER2+)
HER2 (ER-, PR-, HER2+)
TNBC (ER-, PR-, HER2-)
Radiation necrosis
Unknown

1 (5%)
0 (0%)
0 (0%)

15 (71%)
1 (5%)
4 (19%)
July 2022 | Volume 12 | Article 818693
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We next analyzed the recurrent copy number alteration
patterns in primary and BrM samples using Sequenza/GISTIC
2.0 (44, 45). The primary TNBC samples harbored 3 significant
amplicons and 1 deleted region, whereas BrM was more
profoundly altered with 15 significant amplicons and 12
regions of deletion (q < 0.25; Supplementary Figure S5). At
this level of genomic resolution, only 2 regions were commonly
altered between primary and BrM (11p13 amplicon and 13q11
deletion). In breast cancer, these two sites are previously known
to be amplified or deleted, respectively (46, 47). Interestingly, a
number of amplicons/deleted regions identified in this cohort are
known to be associated with breast cancer/aggressive basal breast
cancer, such as gains of 1q, 8p11-12, 8q, 12p13, 13q34, 17q, and
19q and deletions of 3p, 4p16.3, 8p, 11p15, 17p, and 19p13 (48–
58). Documented breast cancer oncogenes (NOTCH2, ENSA,
PIK3CA, CD44, WT1, BCL2L2, AKT2, and TFF3) and tumor
suppressors (BRCA2 and PRKCDBP) reside or are in close
proximity to some of these significantly amplified/deleted
genomic regions, and these alterations potentially contribute to
TNBC progression and BrM development.

Since somatic copy number alteration (SCNA) detection tools
are prone to high false positive rates as well as issues with
precision and accuracy (59, 60), we also performed SCNA
Frontiers in Oncology | www.frontiersin.org 6
calling using CNVkit (61), which combines all normal samples
into a pooled reference to increase performance. In contrast to
Sequenza, this method identified a greater number of SCNA in
primary TNBC relative to BrM, showing that, as a collective
group, primary TNBC samples harbored 27 significant
amplicons and 17 deleted regions, whereas BrM had 8
significant amplicons and 4 regions of deletion (q < 0.25;
Figures 1E, F). Despite notable differences between the two
methods, there was a concordance in the results as well, with
corroboration of 8p11.22 and 11p13 amplification in primary
TNBC and validation of 14q11.2 and 19q13.2 amplification and
4p16.3 deletion in BrM (Figures 1E, F; Supplementary Figure
S5). The CNVkit SCNA analysis also highlights the potential
importance of oncogenes (e.g., RCP, CD44, WT1, BCL2L2, and
AKT2) and tumor suppressors (e.g., PRKCDBP) to TNBC
etiology and metastatic progression, as significant amplicons/
deleted regions harbor these genes.

Finally, we examined the ploidy, tumor purity, and subclonal
makeup of tumors in this cohort. No differences in cellular ploidy
were noted between primary TNBC and BrM (median ploidy of
3.2 and 3.25, respectively; Supplementary Figure S6A).
Similarly, no significant differences in tumor purity were
observed between groups (median purity of 0.57 and 0.76,
A DCB

E F

FIGURE 1 | Mutational analysis of the LCCC1419 cohort. (A) Increased tumor mutational burden (TMB) was observed for BrM (n = 17) relative to primary (n = 13);
*p <0.05, Wilcoxon rank-sum test. (B) No difference was observed between TMB for matched pairs (n = 6). (C) Circos plot showing the total number of variants and
the proportion of variants shared between matched primary/BrM (n = 6). (D) Oncoprint displaying the mutational spectrum of cancer-associated genes with known
etiology to breast cancer (COSMIC Tier 1, Sanger Institute). Representation of the somatic copy number alterations in (E) primary TNBC and (F) BrM as determined
by CNVkit/GISTIC 2.0 analysis. Significant amplicons (Amp) or deleted (Del) regions are annotated (q <0.25, green line). The 1q21.2 amplification and the 20p13
deletion, which are shared genomic features of primary and BrM TNBC, are highlighted by colored boxes. Relevant oncogenes and tumor suppressors are
annotated on the plots, and stars indicate genomic regions where copy number alterations are known to contribute to breast cancer/aggressive basal breast cancer.
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respectively; Supplementary Figure S6B). An analysis of
subclonal tumoral architecture using Pyclone-VI (62) showed
no difference between the number of clones per tumor in each
location, where a median of 3.5 clones per tumor in primary
TNBC (range, 1–5 clones/tumor) and a median of 4 clones per
tumor in BrM (range, 3–6 clones/tumor) were observed
(Supplementary Figure S6C). A subclonal assessment in
patients with matched primary/BrM pairs showed that some
pairs had similar clonal constituency between anatomical sites
(e.g., patients L-01-054, L-01-085, L-02-119, and L-03-016),
whereas other pairs showed signs of divergent clonal evolution
(e.g., L-02-120 and L-03-011) (Supplementary Figure S6D).
Interestingly, 5 of 6 matched pairs the dominant subclone
harbored the highest mutational burden, which was reflected
in the analysis of unmatched tumors as well (not shown),
suggesting that increased mutational load may endow these
subclones with a selective growth advantage.

Tumor Antigen Landscape
We next performed a comprehensive analysis of the neoantigen
landscape in this cohort. We queried a range of neoantigen sources,
including single-nucleotide variants (SNVs), insertion/deletion
events (InDels), splice variants, structural fusion events, cancer
testis antigens (CTAs)/self-antigens, endogenous retroviruses
(ERVs), and viral sources excluding ERVs (63) (Figure 2). The
predominant antigen sources in both primary TNBC and BrMwere
CTAs/self-antigens and ERVs (Figures 2A, B). Upon comparison
of the number of predicted neoantigen-derived peptides, there were
significantly more SNV-derived MHC class I-binding peptides in
BrM as compared to primary TNBC (p = 0.005), with no differences
seen between groups with respect to other neoantigen sources
(Figure 2B). This analysis together shows that TNBC harbors a
diverse set of potentially therapeutically actionable neoantigen-
derived peptides.

Comparison of Immune Gene Signatures
Between Primary TNBC and BrM
Immune gene signatures (IGS) representing multiple components
of the immune system, including B cells, T cells, natural killer cells,
and innate immune cells along with immune cell phenotype
frequencies, were evaluated between primary TNBC tumors (n =
15) and BrM (n = 19) using RNA-Seq (Figure 3; Supplementary
Figure S7; Supplementary Data S1). The majority of IGS across
each of these categories were lower in TNBC BrM compared to
primary TNBC. A gene signature associated with fibroblast-
associated wound healing [Chang_Serum_Response_Up (64)] was
significantly higher in BrM relative to primary tumors (q < 0.05).
RNAseq expression data from primary tumors and BrM were also
assessed using CIBERSORTx (65) to determine relative frequencies
of 22 immune cell subtypes (LM22) to tumor composition. In this
analysis, naïve B cells and M1 macrophages were lower in BrM
compared to primary tumors, while eosinophils and neutrophils
were higher in BrM tissues (q < 0.05) (Supplementary Figure S8).
The expression of the 20-gene immunologic constant of rejection
signature [ICR (66)], which is representative of Th1-mediated
immunity, cytotoxic function, and tissue-specific destruction (e.g.,
Frontiers in Oncology | www.frontiersin.org 7
GVHD, autoimmunity, and allograft rejection), was also
significantly reduced in BrM relative to primary TNBC
(Supplementary Figure S9A). Additionally, the blood
transcriptional modules reported by Rinchai et al. (67) were
queried against our dataset and showed a significant reduction of
B and T cell modules in BrM relative to primary TNBC
(Supplementary Figure S9B) , concordant with the
abovementioned data. These results are together consistent with
an overall immune-excluded brain tumor microenvironment
(TME) in the context of TNBC BrM.

T and B Cell Repertoire Analysis
We used RNA-Seq data from primary TNBC tumors (n = 15)
and BrM (n = 19) to perform T cell and B cell repertoire (TCR/
BCR) profiling. Relative to primary TNBC, TNBC BrM had
lower read counts of T cell receptor alpha and beta (TRA, p <
0.001 and TRB, p < 0.01), with BCR heavy chain and light chain
abundance showing trending but non-significant differences
(Figure 4A). This result is in accordance with RNA-seq data
that showed less T cell and B cell abundance in the primary
samples relative to BrM (Figure 3). Repertoire diversity was
indexed as modeled Shannon entropy (37), which is a diversity
index that accounts for both the richness of the sample (e.g., the
number of unique TCR/BCR sequences) and relative species
abundance (evenness) (68, 69). Thus, a large Shannon entropy
score reflects a more diverse distribution of TCR/BCR sequences.
The modeled Shannon entropy (TCR/BCR diversity) was lower
for BrM compared to primary tumors (TRA, p < 0.01 and TRB,
p < 0.05) (Figure 4B). A comparison of matched BrM and
primary TNBC pairs only, however, did not show a reduction of
TCR/BCR read counts and modeled Shannon entropy
(Figures 4C, D).

Differential Gene Expression and Pathway
Analysis Support an Immune Cell Deficit in
TNBC BrM Relative to Primary
TNBC Tumors
Gene expression was evaluated by utilizing RNA-Seq data between
the primary tumor (n = 15) and BrM (n = 19) tissues. In total, there
were 1,669 differentially expressed genes (DEGs) between these 2
groups, with 935 genes upregulated and 734 genes downregulated in
the BrM tissues compared to primary tumors (q ≤ 0.1; Figure 5A;
Supplementary Data 2). Gene ontology (GO) analysis of DEGs
revealed a significant enrichment of immune-related terms in the
primary TNBC tumors compared to the BrM (particularly terms
reflecting adaptive immune system involvement), whereas GO
terms associated with the nervous system were significantly
higher in the BrM relative to the primary TNBC tumors
(Figure 5B). Canonical pathway analysis (Ingenuity Pathway
Analysis, IPA) of DEGs in primary tumors versus BrM illustrated
a similar preponderance of immune signaling-related pathways as
well as nervous system-related pathways associated with DEGs in
BrM relative to primary tumors (Figure 5C). Upstream regulator
analysis (IPA) further demonstrated an association of immune-
related signaling activity with DEGs in primary tumors relative to
BrM (e.g., IFNG, NFKB, CD3, CSF2, and IL-1b) and an association
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A

B

FIGURE 2 | Tumor antigen sources among the LCCC1419 patients. A comprehensive bioinformatics prediction pipeline that exports (A) the number of neoantigen-
derived MHC class I-binding peptides (Kd < 500 nM) broken down by antigen source was employed. Some patients’ tumors did not have associated tumor or
normal whole-exome sequencing data, and as such, antigen sources that require DNA sequencing data (single-nucleotide variants, InDels, cancer testis antigens, or
fusion events) are not able to be queried in these cases (denoted by †). (B) Distribution of the number of neoantigen-derived MHC class I-binding peptides (Kd < 500
nM) broken down by antigen source, corresponding to (A); **p <0.01 (Wilcoxon rank-sum test).
FIGURE 3 | Immune gene signature metagene analysis showed an overall immune cell deficit in BrM relative to primary triple-negative breast cancer. The colored
bars above the plot indicate both the immune cell category assigned to the respective signatures and whether the signatures were increased/decreased in the
primary tumor relative to BrM. Wilcoxon rank-sum test was performed on Z-transformed signature scores to determine the statistical significance after false discovery
rate correction. Significance codes: †q < 0.1, *q < 0.05.
Frontiers in Oncology | www.frontiersin.org July 2022 | Volume 12 | Article 8186938

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Routh et al. Immunogenomics of TNBC Brain Metastases
of potential oncogenic drivers (e.g., TCF7L2, mTOR, and SH3TC2)
with regulation of BrM DEGs (Figure 5D; Supplementary
Data S3).

Adaptive Immune Cell Signatures Are
Associated With Improved Survival for
Patients With TNBC BrM
We examined the survival associat ion of standard
clinicopathological variables (age at diagnosis of primary
tumor, stage, and race) with different time metrics to event: (1)
time from diagnosis of primary TNBC to death, (2) time from
diagnosis of any metastatic disease to death, and (3) time from
diagnosis of BrM to death. Of these variables, only older age was
significantly associated with poor survival using each of these
time metrics (Supplementary Figure S10), which was similar to
other recent reports (70, 71). Next, survival associations relative
to IGS expression were evaluated using multivariable CoxPH
models in both primary TNBC and BrM. The IGS features in
primary TNBC tumors which were associated with improved
survival following metastatic diagnosis included T cell, B cell, and
dendritic cell (DC) signatures (Supplementary Figure S11A).
Interestingly, a fibroblast serum response/wound healing
Frontiers in Oncology | www.frontiersin.org 9
signature (64) (“Chang_Serum_Response_Up”) was associated
with a significantly poorer survival (p = 0.025) in BrM
(Supplementary Figure S11B) after a diagnosis of metastasis.
DISCUSSION

In this study, we examined the genomic and transcriptomic
landscape of TNBC BrM and primary tumors to further the
understanding of TNBC BrM etiology and the tumor immune
microenvironment. Despite recent progress in the treatment of
ER+ and HER2+ BCBrM with newer brain-penetrant, targeted
therapies, the treatment options for TNBC BrM remain largely
restricted to chemotherapy and local therapy due to lack of
known targets. A growing appreciation for the role of
immunotherapy in the treatment of TNBC highlights the need
to better understand the immune context of BrM as we consider
incorporation of immunotherapy into the care of our
patients (72).

Through whole-exome sequencing, we report that BrM, as a
group, exhibited a greater TMB than primary tumors, though
this observation was not recapitulated in matched tissue pairs.
A B

C D

FIGURE 4 | T cell and B cell repertoire analysis revealed adaptive immune cell deficit in BrM relative to primary triple-negative breast cancer. The distribution of read
counts and modeled Shannon entropy for all samples is displayed in (A, B), respectively. The same information is displayed, respectively, in (C, D) for matched pairs
(note that the number of matched pairs varies due to the presence/absence of relevant reads). Wilcoxon rank-sum test was performed on log10-transformed (read
counts) or raw (modeled Shannon entropy) values to determine the statistical significance. Significance codes: †p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.
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We suspect that this was due to underpowering of our study to
assess matched pairs (n = 6) in the context of TNBC tumor
biological heterogeneity (73). An analysis of shared variants
showed that matched primary TNBC and BrM samples were
more alike than inter-patient primaries and inter-patient BrM,
showing that TNBC is a heterogeneous disease with potentially
non-redundant mechanisms of tumorigenesis. A subclonal
analysis of matched pairs also showed that some patients
displayed patterns of divergent evolution between primary
tumors and BrM. The mutational spectrum of genes with
known causality to breast cancer tumorigenesis was also
queried. TP53 was commonly mutated in this cohort (50%),
supporting its causal role in the development of TNBC, while
other genes such as MAP3K13 and PIK3CA were mutated at a
lower frequency.

Copy number variation analysis revealed common and
unique genomic alteration events between primary TNBC and
Frontiers in Oncology | www.frontiersin.org 10
BrM. 11p13 was commonly amplified in both primary tumors
and BrM. This genomic location harbors the CD44 gene, which is
used to discern breast CSCs, although it has been shown that it is
not likely a driver of amplification of this region in basal breast
cancer (74).WT1, which also resides at 11p13, has been shown to
promote a mesenchymal phenotype in breast cancer cells as well
as to elicit resistance to taxane therapy (47). Regions of 1q were
also commonly amplified, which supports a known role for this
genomic location in breast cancer development (48). The
amplification and increased expression of ENSA (1q21.3) have
recently been shown to drive TNBC progression via positive
regulation of cholesterol biosynthesis (58). 13q11 was deleted in
both primary and BrM TNBC, and this site is proximal to BRCA2
(located on 13q13.1). Whether or not the loss of 13q11 has any
BRCA2-regulatory functionality is unknown, although deletions
in 13q and 14q are common in BRCA2-mutated breast cancers
(75). Common deletion of 20p13 was also observed. While this
A B

C D

FIGURE 5 | Differential gene expression analysis and Gene Set Enrichment Analysis further support the immune cell deficit in BrM relative to primary triple-negative
breast cancer (TNBC). (A) Volcano plot displaying differentially expressed genes (DEGs) in primary TNBC relative to BrM, with the legend showing color-coded levels
of significance. (B) Top Gene Ontology terms associated with DEGs. DEGs with LFC > |1| and q < 0.1 (equating to 468 genes for primary_vs_BrM and 463 genes
for BrM_vs_primary) were subjected to PANTHER overrepresentation test (dotted line represents q = 0.1). (C) Canonical pathway analysis (Ingenuity Pathway
Analysis, IPA) of DEGs. The pathways displayed were significant at q <0.05 (dotted line) and were associated with a significant z-score (z >|2|) which indicates
associative activity. (D) Upstream regulator analysis (IPA) displaying top regulators (z >|2|, q < 0.1) identified to be associated with an active or inhibited state in
primary versus BrM TNBC [see Supplementary Data S2, S3 for the full list of DEGs (q < 0.1) and upstream regulators (z >|2|, q <0.1).
July 2022 | Volume 12 | Article 818693

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Routh et al. Immunogenomics of TNBC Brain Metastases
location is known to be deleted in colon cancer (76), its
association with breast cancer has yet to be explored. Other
common deletions identified included 1p36 and 11p15.5. In
ductal breast carcinoma, the 1p36 deletion is associated with
grade, ERBB2 loss, and loss of BCL2 expression (57) and is
known to be a common feature underlying breast cancer
development and the carcinogenesis of various cancer types
(77). BrM-specific deletion at 11p15.5 (region harboring
PRKCDBP) was also observed, and the chromosomal loss of
this region is associated with BCBrM, with PRKCDBP identified
as a putative tumor suppressor (53).

In primary TNBC, notable amplicons were associated with
both arms of chromosomes 1 and 8. These locations are
associated with breast cancer cytogenetics and pathology (48,
78, 79) and harbor genes (NOTCH2 and RCP, respectively)
associated with breast cancer etiology (49, 80). There were also
several notable alterations specific to BrM. Regions harboring the
oncogenes BCL2L2 (14q11.2), AKT2 (19q13.2), and TFF3
(21q22.3) were amplified in BrM. BCL2L2 is an anti-apoptotic
protein that has an oncogenic role in many solid tumor types,
and it has been found to contribute to breast cancer progression
through its upregulation via hypermethylation of the negative-
regulatory miR-129-2 (81). While PIK3CA was only mutated in
10% of evaluated samples in this study, AKT2 upregulation via
genomic amplification may have a significant impact on TNBC
BrM progression. Dysregulation of the PI3K/AKT/mTOR axis is
a common feature of TNBC (82), and this pathway represents a
promising target in this disease context. TFF3 is also associated
with breast cancer metastasis, where its expression predicts poor
survival (83), and it is also associated with residual invasive
disease following neoadjuvant chemotherapy in breast
carcinoma (84). Interestingly, TFF3 was also found to be
significantly upregulated in T cell-cold tumors of diverse tissue
types, and it was in the top percentile of genes differentially
expressed in T cell-cold versus T cell-hot breast cancers (85),
which suggests its potential as an immunotherapy target. These
mutational and copy number analyses together highlight
potential causative genomic alterations contributing to TNBC
progression and BrM.

A systematic evaluation of the neoantigen landscape in
LCCC1419 was undertaken here . Using a suite of
bioinformatics prediction software, we analyzed tumor-
associated antigens (e.g., CTAs/self-antigens), traditional
tumor-specific antigens (TSAs; e.g., SNVs), and alternative
TSAs [e.g., derived from splice variants, chromosomal
structural variants, InDels, ERVs, and other viral antigens
(63)]. We found that both primary TNBC and BrM harbored
substantial numbers of high-affinity MHC class I-binding
peptides derived from CTAs and ERVs relative to other
antigen sources. CTAs are known to be associated with
aggressive hormone-negative breast cancers and poor survival;
however, they have also been associated with robust
immunogenicity in some contexts (86). ERVs, which are
evolutionary remnants of viral insertional mutagenesis, are also
potentially powerful immunogens (18). Although ERV
Frontiers in Oncology | www.frontiersin.org 11
transcriptional regulation is often epigenetically silenced in
normal cells, tumor cell-specific derepression is known to
occur and is associated with a response to immune checkpoint
blockade (ICB) in multiple cancer types (18, 87, 88). As such,
antigens derived from CTAs and ERVs may be invaluable
immunotherapeutic targets for vaccine strategies targeting
TNBC and BrM lesions. Relative to primary TNBC, we also
found an elevated SNV mutational load associated with BrM.
This augmented TSA burden in BrM also represents a potential
vulnerability to be targeted by combination immunotherapeutic
approaches, including neoantigen vaccine strategies.

A comprehensive analysis of transcriptomic data derived
from this cohort was performed to further understand the
difference between the tumor immune microenvironment of
primary and BrM TNBC. We found that BrM lesions harbored
significantly less immune infiltrate than primary tumors. This is
not surprising, as the brain has historically been considered an
immunologically protected organ (89). A recent study with RNA
array data in BCBrM, agnostic to subtype of BC, has similarly
reported reduced immune scores in BCBrM relative to primary
tumors (90). The general dearth of immune involvement in the
BrM spanned both adaptive (T and B cell) and innate (DC,
eosinophils, and mast cells) immune populations, indicative of a
broad immune deficit relative to primary tumors and again
similar to recent reports (90). Interestingly, BrM displayed an
elevated expression level of genes involved in a serum-induced
fibroblast wound healing response (64). This finding may suggest
that, relative to primary TNBC, BrM lesions are more reliant on
aberrant wound healing properties, requiring increased levels of
stromal involvement for growth and maintenance, as seminally
put forth by Dvorak (91). We also observed that BrM had
significantly decreased TCR (TRA/TRB) abundance and
diversity as compared to primary tumors, and this association
was verging on significance for certain immunoglobulin classes.
These metrics are important, as increased TCR abundance and
diversity have been associated with a response to ICB in multiple
solid tumor types (92). DEGs between primary and BrM TNBC
also reflected a BrM-specific immune deficit. Gene Ontology and
canonical pathway analysis showed that genes that exhibited
relatively lower expression levels in BrM versus primary tumors
were enriched for terms related primarily to an adaptive immune
response. An upstream regulator analysis further supported these
findings, with IFNG being the putative regulator with the highest
significance. In BrM, this upstream regulator analysis further
demonstrated the importance of mTOR signaling but also
showed that TCF7L2 and SH3TC2 may be important players in
BrM development. TCF7L2 variants have been found to be
associated with breast cancer incidence (93, 94). Additionally,
this gene is a positive regulator of Wnt signaling, regulates the
MYC oncogene, represses the cell cycle inhibitors CDKN2C/
CDKN2D, and is a transcriptional driver of various oncogenes,
contributing to the progression of colon cancer and other cancer
types (95).

We performed survival analyses examining the prognostic
potential of IGS in the context of standard clinicopathological
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features. Signatures representing levels of T cells, B cells, NK
cells, and DC cells in the primary tumors were associated with
improved survival. The collective association of these IGS with
favorable survival is likely indicative of the high degree of
expression correlation structure (and thus co-infiltration levels
of the associated immune cell types) observed in this cohort
(Supplementary Figure S5). Moreover, the favorable association
between T cell, B cell, and DC IGS and survival may indicate that
patients with higher anti-tumor immune infiltrate in their
primary TNBC may have a higher propensity to develop long-
lasting immunological memory that functions to stave off
metastatic spread. Similarly, levels of signatures reflective of
gamma-delta T cel ls and ICB responsiveness [e .g . ,
Vincent_IPRES_Responder signature (96)] in BrM were
associated with improved survival from the time of BrM
diagnosis, indicating that elevated immune involvement in the
brain TME may be beneficial to patient survival. Conversely, the
aforementioned fibroblast wound healing signature
[Chang_Serum_Response_Up (64)] was associated with poor
survival in BrM, indicative of a deleterious quality of this
signature and the underlying biology that it represents.

While this study represents the largest series focused on
TNBC BrM to date, to our knowledge, it is mainly limited by
low power, particularly regarding matched pairs (with only n = 6
matched WES and n = 9 matched RNA-seq pairs). An additional
limitation is the inability to corroborate adaptive immune
receptor repertoire inference with amplicon sequencing, which
was precluded due to inadequate specimen nucleic acid
abundance. Future work will expand these, and additional
analyses to additional TNBC samples, as well as to other BC
subtypes in the LCCC1419 biobank, including HER2+ and ER/
PR+ BCBrM, to enable a comparison of BrM across the spectrum
of BC. Utilization of in vivo murine models for testing the
relevance of these findings, including the assessment of vaccine
strategies and ICB as potential therapeutic approaches for TNBC
BrM, is warranted.

In summary, we report the genomic characterization of BrM
compared to primary tumors from TNBC patients, including
some matched pairs, with a focus on the immune landscape.
Utilizing both WES and RNA-seq analytical pipelines, we
demonstrated that BrM exhibited increased TMB and SNV
mutational load, reduced immune gene signature expression
and TCR receptor abundance/diversity metrics, and increased
expression of a wound healing signature. A prediction of elevated
levels of CTA- and ERV-specific neoantigen peptides was
confirmed in both anatomical locations, supporting the
continued development of vaccine and immune checkpoint
inhibition approaches in TNBC. IGS, including T cell-related
immune signatures in primary and BrM TNBC, correlated with
improved survival in this patient cohort. We expect that these
results and the data reported herein will be valuable in
understanding TNBC BrM biology going forward and provide
further rationale for the application of immunotherapeutic
approaches in this disease.
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Supplemental Figure 1 | Samples included in immunohistochemical andsequencing
(RNAandDNA)analyses.Primarybreast tumor,BrM,andnormalbloodspecimens froma
totalof25patientswithBrMfromTNBCwere included in theanalyses.Matchedbloodwas
analyzedbyDNAsequencing as a comparison for tumorWES for identification of somatic
variants. Final sample numbers by tissue and analysis type are provided.

Supplemental Table 1 | Clinicopathological characteristics and specimen
availability by patient in the LCCC1419 study cohort. Grayed boxes indicate tumors
that switched subtypes between the primary tumor and the BrM based on IHC (n=2
patients). “Y” indicates a specimen was analyzed by the indicated method.

Supplemental Figure 2 | PAM50 intrinsic molecular subtype analysis of RNA-
Seq expression data. (A) Heatmap displaying that the majority of samples in 1419
were of the basal subtype. Subtype analysis was performed according to methods
described in Picornell et al27. Red circles highlight samples from the two patients
where IHC indicated subtype switching (see Table 1). The R package heatmaply97
was used for heatmap visualization with hierarchical clustering based on average
linkage. (B) Stacked barplot displaying percentage of primary and BrM tumors
belonging to respective molecular subtypes.

Supplemental Figure 3 | Intrasample variant sharing is minimal in primary and
BrM TNBC. Circos plot showing total number of variants and proportion of variants
shared between primary TNBC (yellow; n=13) and BrM (purple; n=17).

Supplemental Figure 4 | TMB is associated with survival in the LCCC1419 TNBC
cohort. Multivariable survival analysis including age at diagnosis, race, stage, and TMB
of primary tumor as covariates relative to time to event, which for this analysis was the
time fromdiagnosis of the primary tumor to death. Patientswith unknown race or stage
wereexcluded fromanalysis (n=11patients included). Additionally for this analysis stage
I and II were binned, and stage III and IV were binned.

Supplemental Figure 5 | Somatic copynumber alteration assessment.SCNA in (A)
primary TNBC (n=12) and (B) BrM (n=16) as determined by Sequenza/GISTIC 2.0
analysis. Significant amplicons (Amp) or deleted (Del) regions are annotated (q<0.25,
green line). 11p13amplificationand13q11deletion,whicharesharedgenomic features
of primary and BrM TNBC, are highlighted by colored boxes. Potential oncogenes and
tumor suppressors are annotated on the plots, and stars indicate genomic regions
where copy number alterations are known to contribute to breast cancer/aggressive
basal breast cancer.

Supplemental Figure 6 | Ploidy, tumor purity, and subclonal heterogeneity
assessment of LCCC1419. (A) Ploidy and (B) tumor purity were assessed using
Sequenza, where no significant differences were observed between primary TNBC
(n=12) and BrM (n=16); matched pairs shown on right of each panel (n=6). (C)
Distribution of subclone number per tumor. (D) Cellular prevalence and mutational
load of subclones in matched pairs (n=6).
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Supplemental Figure 7 | Correlation matrix of expression of immune gene
signatures (IGS) used in this study. (A) IGS (n=32; refer to Supplemental Data 1 for
genes comprising respective signatures) were quantified from RNA-Seq expression
data from primary TNBC (n=15) and BrM (n=19), and analyzed by Spearman
correlation analysis. (B) IGS correlation matrix applied to the same dataset from (A)
using a compendium of IGS (64 signatures; refer to Supplemental Data 1 for genes
comprising respective signatures) curated by our group. Due to the high degree of
correlation of some of the subsets of IGS, we culled this list to the 32 signatures
shown in (A) so as to reduce signature redundancy while maintaining breadth of
represented immune cell types/features. Color denotes Spearman rho, and X
indicates a non-significant relationship (p>0.05). The R package Ggcorrplot98 was
used to generate correlation plot.

Supplemental Figure 8 | Immune cell type deconvolution of RNA-Seq
expression data. RNA-Seq expression data from primary TNBC (n=15) and BrM
(n=19) was input into CIBERSORTx65 (https://cibersortx.stanford.edu/) to
determine relative contributions of 22 immune cell subtypes (LM22) to tumor
composition. Wilcoxon rank-sum test was performed on Z-transformed cell fraction
values to determine statistical significance. Significance codes: *q<0.05; **q<0.01.

Supplemental Figure 9 | Analysis of additional immune modules further
demonstrate immune cell deficit in BrM relative to primary TNBC. (A) Expression of
the 20-gene Immunologic Constant of Rejection (ICR) signature was significantly
reduced in BrM (n=19) relative to primary TNBC (n=15). (B) Blood transcriptional
module repertoires reported by Rinchai et al (DOI: 10.1093/bioinformatics/btab121)
were applied to the LCCC1419 RNAseq dataset using the Bioconductor R package
BloodGen3Module Groupcomparison function. Significant immune modules are
annotated on the plot. This analysis corroborates data showing a reduction of B and
T cells in the BrM relative to primary TNBC (q<0.1).

Supplemental Figure 10 | Multivariable survival analysis of clinicopathological
variables. Clinicopathological variables (age at primary tumor diagnosis, race, and
stage) were analyzed by multivariable CoxPH. Category labels indicate time metric
to event that was applied. Patients with unknown race (including one Asian patient)
or stage were excluded from analysis (n=21 patients included). Additionally for this
analysis stage I and II were binned, and stage III and IV were binned. Significance
codes: *q<0.05; **q<0.01; ns, not significant.

Supplemental Figure 11 | Multivariable CoxPH analysis of IGS in primary and BrM
TNBC. Each of 32 IGS (refer to Supplemental Figure 7) was included as a covariate
along with clinicopathological variables (age at diagnosis, race, stage), which yielded
odds ratios (OR; hazard ratios) and p values. These p values were then FDR-adjusted.
This analysis was performed using three different time metrics to death, as indicated in
(A)primaryTNBCand (B)BrManalyses.Only IGS that hadunadjustedp valuesof<0.1
are shown. Note that none of the IGS achieved significant associationwith survival after
false discovery correction, which is likely due to low sample number.
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