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Abstract

Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in

neurons of the peripheral nervous system. Primary infection causes varicella whereas reac-

tivation results in zoster, which is often followed by chronic pain in adults. Following infection

of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leuko-

cytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their

activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains

poorly understood. Here we addressed the influence of VZV on leukocyte migration and

found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds

chemokines with high affinity. Functional experiments show that VZV rSgC potentiates che-

mokine activity, enhancing the migration of monocyte and T cell lines and, most importantly,

human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of

chemokine activity occurs through the C-terminal part of gC ectodomain, containing pre-

dicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires inter-

action with the chemokine and signalling through the chemokine receptor. Finally, we show

that VZV viral particles enhance chemokine-dependent T cell migration and that gC is par-

tially required for this activity. We propose that VZV gC activity facilitates the recruitment

and subsequent infection of leukocytes and thereby enhances VZV systemic dissemination

in humans.
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Author summary

Varicella zoster virus (VZV) causes two main pathologies in humans, chickenpox during

primary infection, and shingles following reactivation. The latter is a painful condition

that is often followed by chronic pain in a large numbers of shingles patients. Despite the

existence of a vaccine, shingles-related complications cause expenses of more than $1 bil-

lion per year in the USA alone. Following primary infection, the virus infects leukocytes

including T cells, spreading to the skin causing chickenpox. Direct infection of neurons

from leukocytes has also been postulated. Given the relevance of leukocytes in VZV biol-

ogy and the importance of chemokines in directing their migration, we investigated

whether VZV modulates the function of chemokines. Our results show that VZV glyco-

protein C potentiates the activity of chemokines, inducing higher migration of human leu-

kocytes at low chemokine concentration. This may attract additional susceptible

leukocytes to the site of infection enhancing virus spread and pathogenesis.

Introduction

Varicella zoster virus (VZV) belongs to the Alphaherpesvirinae subfamily and establishes

latency in ganglia of the peripheral nervous system [1]. VZV causes varicella during primary

infection and zoster, a painful vesicular rash, following reactivation. There are licensed vac-

cines to prevent varicella and zoster. However, the annual incidence of zoster increases with

age, being approximately 0.7–1% in individuals older than 65 years old in the USA and Europe

[2–5]. Zoster is frequently followed by post-herpetic neuralgia (PHN), the second most com-

mon type of neuropathic pain worldwide, in the elderly [3, 6–8]. Zoster and PHN related com-

plications are associated with high health care costs [9, 10]. The cellular and viral factors

involved in the induction of pain by VZV are not fully known. This is in part due to the host

specificity of VZV that highly restricts the use of animal models to study VZV pathogenesis in
vivo.

During the natural course of infection VZV infects epithelial cells in the mucosa of the

respiratory tract. Subsequently it infects leukocytes including dendritic and T cells [11–16],

most likely in the proximity of the Waldeyer’s tonsillar ring, allowing dissemination of the

virus to internal organs, the skin and sensory ganglia [11, 12, 15, 17–19]. VZV infection modu-

lates gene expression of T cells, inducing a phenotype associated with leukocyte migration

towards skin where infection of keratinocytes and free nerve endings occurs [20]. VZV estab-

lishes latency in neurons either following retrograde transport from the skin or through direct

transmission from infected leukocytes [21–23]. All these data point to the relevance of leuko-

cytes in VZV dissemination and to the ability of VZV to modulate T cell activity, including

migration. Whether VZV recruits leukocytes to facilitate spread remains unknown.

Leukocyte migration is a highly regulated process [24] with chemokines playing an essential

role [25]. There are four classes of chemokines classified according to the relative position of

the N-terminal cysteine residues into CXC, CC, C and CX3C [26]. To function in vivo, chemo-

kines interact with glycosaminoglycans (GAGs) [27, 28] and G protein-coupled receptors

(GPCRs). Binding of the chemokine to GPCRs activates Gαi proteins, triggering a series of sig-

nalling events that culminate in leukocyte transmigration to the infected tissue [29]. Several

viruses modulate leukocyte migration through the regulation of chemokine activity. Some

members of the Pox- andHerpesviridae families express chemokine binding GPCRs [30],

while others express secreted or type I transmembrane proteins that bind chemokines with

high affinity termed viral chemokine binding proteins (vCKBP) [31]. The vCKBP have low or
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no sequence identity between themselves or with host proteins. The majority of the described

vCKBP inhibit chemokine activity, through impairing the interaction of the chemokine with

the GPCR, GAGs or both [31, 32]. The exception to this rule is soluble glycoprotein G (SgG)

from herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively), which, in contrast to

gG from animal alphaherpesviruses [33], enhances chemokine-mediated migration [34]. So

far no chemokine binding activity has been described for VZV, which lacks the orthologous

gG gene (US4) [35, 36].

Due to the relevance of leukocyte migration in VZV spread and subsequent pathogenesis

we investigated the possible modulation of leukocyte migration by VZV. Moreover, chemo-

kines and leukocytes are also involved in the generation and chronicity of pain [37, 38], a fea-

ture of VZV pathology. We focused on VZV glycoprotein C (gC) encoded by open reading

frame 14 (ORF14) [39] since several results point to a potential role for gC in VZV pathogene-

sis: (i) VZV isolates lacking gC expression replicate at lower levels than the parental virus in

human skin implants in severe combined immunodeficiency mice and in human foetal skin

organ culture [40, 41]; (ii) VZV gC is not essential for replication in vitro [42] and passage of

VZV in culture can result in loss of gC expression [40]; (iii) the attenuated vaccine strain vOka

expresses lower levels of gC than parental pOka or other wild type strains [39, 43]. VZV gC is a

type I transmembrane protein of unknown function. Furthermore, it is unclear if gC or a par-

ticular gC domain is secreted by infected cells by proteolytic cleavage or due to alternative

splicing as reported for HSV-1 gC [44].

Our results show that recombinant soluble VZV gC ectodomain (rSgC) binds chemokines

and potentiates chemokine-dependent leukocyte migration, including that of human tonsillar

leukocytes, the target of VZV during primary infection. The interaction with chemokines is of

high affinity and takes place through the C-terminal part of gC ectodomain containing two

predicted immunoglobulin-like domains (IgD). This region is also sufficient for potentiation

of chemokine activity. Moreover, we show that VZV rSgC binds to the cell surface via a specific

interaction with GAGs taking place through an N-terminal repeated domain. Interaction of

rSgC with the cell surface through GAGs is not required for potentiation of chemokine activity

in vitro. However, binding to the chemokine and signalling through its receptor are required

for rSgC activity. Finally, cell-free VZV enhances chemokine-dependent T cell migration and

deletion of gC reduces this enhancement. We propose that VZV gC activity increases the che-

mokine-mediated attraction of leukocytes to the site of infection improving dissemination of

the virus within the host.

Results

Novel vCKBP VZV rSgC binds chemokines with high affinity

In order to address whether VZV gC can modulate leukocyte migration we expressed a recom-

binant, soluble VZV gC ectodomain (VZV rSgC, amino acids 23–531 in gC from Dumas strain

[36]) containing an N-terminal histidine tag (His-tag) in insect cells using the baculovirus

expression system (Fig 1A). To enhance protein secretion in insect cells we substituted the pre-

dicted VZV gC signal peptide by that of the honey bee melittin. The protein was purified by

affinity chromatography and detected by Coomassie staining and western blotting using anti

His-tag and anti VZV gC [45] monoclonal antibodies (Fig 1B). We immobilised purified VZV

rSgC on a CM4 Biacore chip and performed a binding screening with 43 human chemokines

(see Materials and methods) injected at a concentration of 100 nM using a 30 μl/min flow rate

to reduce mass transfer. A sensorgram showing selected curves from this assay is shown in Fig

1C. Surface plasmon resonance (SPR) data showed that VZV rSgC bound a broad range of

human CXC and CC chemokines: CXCL1, CXCL2, CXCL4, CXCL6, CXCL9, CXCL10,

VZV gC enhances chemokine activity

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006346 May 25, 2017 3 / 28

https://doi.org/10.1371/journal.ppat.1006346


Fig 1. Determination of VZV rSgC chemokine binding properties. (A) Schematic representation of full-

length VZV gC protein (top) and the derived construct to express recombinant soluble VZV gC ectodomain

(rSgC, bottom) in Hi-5 insect cells. Numbers indicate amino acid positions within VZV gC Dumas strain. The

VZV gC signal peptide (SP) was substituted by that of the honey bee melittin (HM) to improve secretion in

insect cells. A histidine tag (His) was introduced at the N-terminus to facilitate purification of rSgC by affinity

chromatography. (B) Purified rSgC was detected by Coomassie staining (left panel) or by Western blotting

using antibodies to the His-tag (middle panel) or to VZV gC (right panel). (C) Sensorgram showing association

and dissociation phases of the interaction between rSgC and selected chemokines injected at a concentration

of 100 nM. The arrow indicates the end of the chemokine injection. Positive (CXCL13, CXCL12-α, CCL5,

CCL13) and negative (CCL3, CCL15 and CX3CL1) interactions are shown. Abbreviations: RU, resonance

units. kDa, kiloDaltons; TMB, transmembrane; CD, cytoplasmic domain.

https://doi.org/10.1371/journal.ppat.1006346.g001
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CXCL11, CXCL12-α, CXCL12-β, CXCL13, CXCL14, CCL1, CCL5, CCL11, CCL13, CCL16,

CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL25, CCL26, CCL27 and CCL28. The

affinity of the interaction was high, in the nanomolar range (Table 1). Weak interactors,

according to the response obtained in the SPR experiments, were CXCL16, CCL2, CCL7,

CCL8, and CCL27. VZV rSgC did not interact with CCL3, CCL4, CCL14, CCL15, CCL23,

CXCL3, CXCL5, CXCL7, CXCL8, CX3CL1 and XCL1. Interaction with a high number of che-

mokines has been previously shown for other vCKBP such as murine gammaherpesvirus 68

(MHV-68) M3 [46, 47]. M3 specificity is broader than that of rSgC, since it can also interact

with members of the CX3CL1 and XCL1 families. The different association and dissociation

rates suggest different types of binding properties between rSgC and distinct chemokines.

Overall, our results show that VZV gC is a vCKBP that interacts with high affinity with a broad

range, but not all, of human chemokines belonging to the CXC and CC subfamilies.

VZV rSgC enhances chemokine-dependent leukocyte migration of

human tonsillar cells

We addressed whether VZV rSgC interaction with chemokines had any functional relevance

on chemokine activity by performing chemotaxis experiments using transwell devices. Addi-

tion of increasing concentrations of CXCL12-α resulted in migration of human leukemic CD4

T-cell line Jurkat, reaching a plateau at a chemokine concentration of approximately 15 nM

(Fig 2A). Incubation of CXCL12-α with rSgC at a constant molar ratio (1:200, ck: rSgC) dis-

placed the chemotactic curve towards lower chemokine concentrations, reaching the maxi-

mum number of migrated cells at a chemokine concentration of approximately 3 nM. The

number of cells migrating at the peak of the chemotactic curve remained similar (Fig 2A).

Thus, in the presence of rSgC the chemokine-induced migration of Jurkat T cells was

enhanced at lower chemokine concentrations (1–3 nM), indicating that rSgC potentiates che-

mokine activity. Similar results were obtained with the human monocyte cell line MonoMac-

1, indicating that this phenomenon was not cell type specific (Fig 2B). Due to the relevance of

tonsillar leukocytes in the VZV infection cycle, we performed chemotaxis experiments using

primary human leukocytes obtained from patients subjected to tonsillectomy. VZV rSgC also

enhanced the CXCL12-α-dependent migration of human tonsillar leukocytes (Fig 2C).

VZV rSgC binds to the cell surface through a specific interaction with

GAGs

Several vCKBPs, but not all, bind to the plasma membrane through GAGs and this interaction

seems to be important for their activity [31]. To our knowledge, so far it has not been formally

proven that VZV gC binds GAGs. Previous work indicates that other proteins like glycopro-

tein B but not gC are responsible for initial interaction of VZV particles with GAGs [42]. VZV

Table 1. Binding parameters of different chemokines to rSgC. N.D: Not determined.

Chemokine Binding Ka (1/Ms) Kd (1/s) KD (M) t(1/2)s

hCXCL12-α Yes 1.60 x 107 0.004293 2.69 x 10−10 161.4256

hCXCL13 Yes 5.94 x 106 0.002506 4.22 x 10−10 276.5363

hCCL2 Yes 1.73 x 105 0.001012 5.84 x 10−9 684.7826

hCCL13 Yes 1.04 x 107 0.001836 1.76 x 10−10 377.451

hCCL19 Yes 1.54 x 107 0.002117 1.38 x 10−10 327.35

hCCL3 No N.D. N.D. N.D. N.D.

hCCL15 No N.D. N.D. N.D. N.D.

https://doi.org/10.1371/journal.ppat.1006346.t001
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rSgC bound to the cell surface of Chinese hamster ovary cells (CHO-K1); but not to mutant

CHO cells lacking GAG expression (CHO-618 cells) [48] (Fig 3A). As a positive control for

GAG interaction we used HSV-2 recombinant SgG (rSgG) [49] and as a negative control M3

from MHV-68 [50]. The interaction of VZV rSgC with GAGs was confirmed by SPR using an

SA chip containing biotinylated heparin (Fig 3B) and by pull-down assays using heparin beads

(Fig 3C). VZV recombinant soluble glycoprotein B and I (rSgB and rSgI, respectively) were

used as positive and negative controls for the interaction with heparin, respectively [51]. The

interaction with heparin was specific since it could be competed with soluble heparin in the

SPR and pull-down experiments, and rSgC did not bind to agarose beads lacking heparin (Fig

3B and 3C).

Identification of VZV rSgC residues involved in chemokine and cell

surface interaction

VZV rSgC can be divided in two main regions according to its amino acid sequence. The N-

terminal region (amino acids P23 to F151) contains a repeated sequence of fourteen amino

acids (TSAASRKPDPAVAP) [52]. The number of repetitions varies among different strains

[52]. Glycoprotein C from the Dumas strain, used in this study, contains seven and a half

Fig 2. VZV rSgC enhances chemokine-dependent migration. Chemotaxis of Jurkat (A) and MonoMac-1 (B) cell lines and human primary tonsillar

leukocytes (C) towards increasing concentrations of CXCL12-α alone or in the presence of a 1:200 molar ratio of chemokine:rSgC. In all experiments

the chemokine was incubated with or without VZV rSgC at 37˚C in a humidified incubator prior to the addition of the leukocytes to the top chamber.

Migrated cells were detected in the lower chamber at the end of the experiment. Plots show one representative assay performed in triplicate out of at

least three independent experiments. Error bars represent standard deviation. (D) Coomassie staining showing a representative purification of the

rSgC used in the chemotaxis studies. **P<0.005; ***P<0.0005.

https://doi.org/10.1371/journal.ppat.1006346.g002
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Fig 3. VZV rSgC interacts with the cell surface through a specific interaction with GAGs. (A) Histograms showing the interaction of MHV-68

M3 (left panel), HSV-2 rSgG (middle panels) and VZV rSgC (right panels) with CHO-K1 cells (upper panels) or CHO-618 cells (lower panels).

CHO-K1 cells contain GAGs whereas CHO-618 cells are devoid of GAGs. Surface-bound proteins were detected by flow cytometry using an anti

His-tag antibody. Light grey histograms represent the signal obtained when no recombinant protein was used. Empty histograms represent the

signal obtained with 100 ng of purified recombinant protein. (B) Graph showing the number of resonance units (R.U.) obtained when rSgC (alone

VZV gC enhances chemokine activity
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repetitions. The C-terminal region of the ectodomain (amino acids P140 to V531) contains

two predicted immunoglobulin-like domains (according to Superfamily 1.75; Interproscan 5

and Phyre software) (Fig 4A). To determine the relevance of these two main regions in rSgC-

chemokine interaction and modulation we generated two truncated rSgC proteins, one con-

taining the repeated domain (amino acids P23 to F151) termed R2D and another one contain-

ing amino acids P140 to V531, including the predicted immunoglobulin-like domains, termed

IgD (Fig 4A). Both constructs were expressed and purified using the same protocol as with the

full-length rSgC, and therefore contain the honey bee melittin signal peptide and an N-termi-

nal His-tag (Fig 4A). Purified recombinant proteins were detected by Coomassie staining and

western blotting with an anti His-tag antibody. A previously generated anti-gC antibody [45]

recognised the R2D, but not the IgD protein. To detect IgD we generated a new rabbit poly-

clonal antibody targeting purified recombinant IgD containing a C-terminal Twin-Streptavi-

din (Twin-Strep) tag [53] (IgD-Strep, S1 Fig). IgD-Strep was expressed in Schneider’s

Drosophila melanogaster S2 cells and purified by affinity and size exclusion chromatography

(S1 Fig). Both R2D and IgD were recognised by antibodies specific for each SgC region (Fig

4B).

Next we addressed which part of SgC binds chemokines by SPR. As shown in Fig 4C, IgD

interacted with the same chemokines as rSgC and with similar KD (see also Table 2).

IgD-Strep also interacted with chemokines (S1 Fig), confirming the relevance of this domain

in the interaction using independent expression and purification systems. On the contrary,

R2D did not interact with chemokines (Fig 4D). As a positive control for immobilisation of

R2D in the Biacore chip we used a VZV gC-specific monoclonal antibody [45] (Fig 4D). Our

results show that amino acids P140 to V531 of VZV rSgC are involved in the high affinity

interaction with chemokines.

We then performed cell-binding experiments to determine whether one of these two

regions was responsible for the interaction with the cell surface. As shown in Fig 5A, the full-

length rSgC and, to a lesser extent, R2D interacted with the cell surface of CHO-K1 cells. The

interaction was dependent on the presence of GAGs since rSgC and R2D did not interact with

the GAG-deficient CHO-618 cell line (Fig 5B). IgD did not bind to CHO cells, indicating that

it does not interact with GAGs.

Potentiation of chemokine activity in vitro does not require interaction of

rSgC with the cell surface through GAGs

Analogous to HSV rSgG, VZV rSgC potentiates chemokine activity. Similarly, several host

chemokines have been shown to enhance the chemotactic activity of other chemokines in a

process referred to as chemokine synergism or cooperation [54]. Chemokines and HSV rSgG

bind GAGs and this interaction appears to be relevant for the mechanism of action of both

HSV rSgG and some synergistic chemokines [49, 55]. Therefore, we determined whether the

interaction of VZV rSgC with the cell surface through GAGs was relevant for VZV rSgC activ-

ity. To this end we performed chemotaxis experiments with IgD, which bound chemokines

with similar affinities as full-length rSgC (Fig 4C and Table 2), but did not interact with the

or in the presence of increasing concentrations of heparin) was injected over an SA chip containing immobilised heparin. The maximum R.U.,

recorded at 90 seconds, is shown. The signal obtained with buffer alone was subtracted from the signal obtained with the samples containing

rSgC. The ratios of rSgC:heparin used are indicated in the X axis. (C) Western blots showing binding of VZV rSgB (top blot), VZV rSgC (middle

blot) or VZV rSgI (bottom blot) to heparin beads. Bound proteins were detected by Western blotting using an anti His-tag antibody. Binding was

competed with increasing amounts of soluble heparin (0.1, 0.5, 1 and 2 mg). The input, corresponding to 1/10 of the starting material, is shown in

the right lane. One representative experiment out of at least three independent experiments is shown in A-C. Abbreviations: Hep, heparin; Hep B,

heparin beads; gp, glycoprotein; rSg, recombinant soluble glycoprotein; kDa, kiloDaltons.

https://doi.org/10.1371/journal.ppat.1006346.g003
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Fig 4. Identification of the rSgC binding domain responsible for interaction with chemokines. (A) Schematic representation of full-length gC

protein (top construct) and deletion constructs containing either amino acids 23–151 (R2D, middle construct) or amino acids 140–531 (IgD, bottom

construct). The numbers indicate amino acid positions within VZV gC Dumas strain. To improve secretion in insect cells the VZV gC signal peptide (SP)

was substituted by that of the honey bee melittin (HM). The introduction of the N-terminal histidine tag (His) allowed purification of the proteins by affinity

chromatography. (B) Purified proteins were detected by Coomassie staining (upper panels) or by Western blotting (bottom panels) using antibodies: anti

His-tag (left panel), anti R2D (middle panel) and anti IgD (right panel). Left and middle blots were obtained following transfer from the same gel, whereas

the right blot comes from an independent gel. (C,D) Sensorgrams showing the association and dissociation phases of the interaction between chemokines

(CXCL2, CXCL12-α, CXCL13, CCL19 and the negative control CX3CL1 at 100 nM) and IgD (C) or R2D (D). The same chemokines were injected in the
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cell surface through GAGs (Fig 5A). As shown in Fig 6, both IgD and rSgC potentiated chemo-

kine activity to a similar extent. Similarly, IgD-Strep, purified by affinity and size exclusion

chromatography, also enhanced chemokine activity as efficiently as IgD (S1 Fig). Thus, our

results indicate that VZV rSgC interaction with the cell surface is not required for potentiation

of chemokine activity in vitro.

VZV rSgC enhancement of chemokine activity requires interaction with

the chemokine and subsequent signalling through the chemokine

receptor

We next addressed whether VZV rSgC enhanced chemokine activity in the absence of chemo-

kines, i.e., independent of chemokine-mediated receptor activation. We observed that the

presence of the chemokine was required for rSgC-mediated enhancement since VZV rSgC

alone did not induce migration (Fig 7A and 7B). Moreover, treatment of the sample with pro-

teinase K (PKrSgC) abrogated rSgC activity, indicating that the effect was not due to the pres-

ence of a contaminating, non-proteinaceous compound such as lipopolysaccharide, in our

preparation (S2A Fig). rSgC enhanced chemokine activity at chemokine:rSgC ratios lower

than 1:200 (S2B and S2C Fig). VZV rSgC enhancing effect was blocked following addition of

pertussis toxin (PTX) (Fig 7A), indicating that G protein coupling was required. Addition of

AMD3100, an antagonist of CXCR4 [56], blocked rSgC activity showing that chemokine bind-

ing to its receptor and thereby signalling through the CXCL12 receptor are required (Fig 7B).

These results were supported by the use of Met-CCL5, an antagonist of CCL5-mediated che-

motaxis of primary human monocytes [57]. Pre-incubation of VZV IgD with Met-CCL5 did

not result in chemotaxis, indicating again that chemokine activity is required for IgD potenti-

ating effect. However, VZV IgD enhanced the activity of a non-aggregating CCL5,

CCL5-E66A [58] (Fig 7C), which is fully active for chemotaxis in vitro [59], indicating that

VZV IgD activity is independent of chemokine oligomerization in vitro. Lack of potentiation

of Met-CCL5 was not due to lack of interaction with VZV IgD, since it interacted with both

Met-CCL5 and CCL5-E66A similarly, as shown by SPR (S3 Fig). Finally, rSgC enhanced

CCL5- but not CCL3-mediated chemotaxis of human monocytic THP-1 cells, a cell line

migrating towards both chemokines (Fig 7D). Similar results were obtained using CXCL12-α,

CCL3 and MonoMac-1 cells (S4 Fig). Since rSgC interacted with CXCL12-α and CCL5 but

not with CCL3 (Fig 1C), these results show that interaction of rSgC with the chemokine is

required for rSgC activity. Overall, these results show that VZV rSgC does not induce

IgD and R2D chips. The arrow indicates the end of the chemokine injection. (D) An antibody targeted to gC was injected into the R2D chip at a

concentration of 10 ng/μl. Abbreviations: RU, resonance units; kDa, kiloDaltons; TMB, transmembrane; CD, cytoplasmic domain.

https://doi.org/10.1371/journal.ppat.1006346.g004

Table 2. Binding parameters of different chemokines to IgD. N.D: Not determined.

Chemokine Binding Ka (1/Ms) Kd (1/s) KD (M) t(1/2)s

hCXCL12-α Yes 1.26 x 107 0.001601 1.27 x 10−10 393.50

hCXCL13 Yes 2.64 x 106 0.001496 5.67 x 10−10 463.23

hCCL2 Yes 2.14 x 105 0.001297 6.05 x 10−9 534.31

hCCL13 Yes 1.30 x 107 0.003887 2.99 x 10−10 178.28

hCCL19 Yes 1.37 x 107 0.001608 1.18 x 10−10 430.97

hCCL3 No N.D. N.D. N.D. N.D.

hCCL15 No N.D. N.D. N.D. N.D.

https://doi.org/10.1371/journal.ppat.1006346.t002
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Fig 5. Characterization of the rSgC binding domain responsible for interaction with the cell surface.

Histograms showing the interaction of purified recombinant M3, full-length rSgC, IgD and R2D with CHO-K1

cells (A) or CHO-618 cells (B). CHO-K1 cells contain GAGs whereas CHO-618 cells are devoid of GAGs.

Bound proteins were detected by flow cytometry using an anti His-tag antibody. Light grey histograms

represent the signal obtained when no recombinant protein was used. Empty histograms represent the signal

VZV gC enhances chemokine activity
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chemotaxis on its own but enhances the activity of chemokines through a mechanism that

requires chemokine interaction and signalling through the chemokine receptor.

Cell-free VZV enhances chemokine activity and this effect is partially

dependent on gC

We next addressed whether gC modulates chemokine activity during VZV infection. To this

end we generated a recombinant VZV, based on VZV strain pOka, expressing monomeric

green fluorescent protein (mGFP) instead of gC (pOka-ΔgC-mGFP) using the en passant
mutagenesis [60]. Recombinant viruses were characterized by western blotting (Fig 8), and

sequenced to ensure the lack of non-desired mutations. Deletion of gC did not impair replica-

tion in the human retinal epithelial cells ARPE-19 (S5 Fig), analogous to previous studies [39,

42]. We generated and analysed cell-free VZV by western blotting and negative staining (Fig

8). Both wt and pOka-ΔgC-mGFP had similar levels of gE expression and viral particle mor-

phology. We performed chemotactic assays using comparable virus amounts based on the

level of gE protein (Fig 9). Pre-incubation of the CXCL12-α with parental cell-free pOka

enhanced migration of Jurkat cells towards the chemokine. The enhancement in migration by

cell-free VZV required the presence of the chemokine, because the virus alone did not induce

chemotaxis, similar to rSgC. This is the first description of such a phenomenon for VZV. The

use of cell-free pOka-ΔgC-mGFP resulted in approximately 20–50% reduced enhancement of

chemokine activity depending on the experiment and the amount of chemokine used (Fig 9),

indicating that gC plays a role in VZV mediated enhancement, and that in addition other

unknown factors are involved.

obtained with recombinant protein. One representative experiment out of at least three independent

experiments is shown.

https://doi.org/10.1371/journal.ppat.1006346.g005

Fig 6. rSgC and IgD enhance chemokine-dependent migration. (A) Transwell experiment showing the effect of rSgC

or IgD proteins on CXCL12-α-induced migration. A range of chemokine concentrations alone or together with 1:200 molar

ratio of chemokine:rSgC or IgD was incubated in the bottom chamber of the transwell during 30 minutes at 37˚C in a

humidified incubator prior to the addition of Jurkat T cells to the top chamber. Migrated cells were detected in the bottom

chamber. Plots show one representative assay performed in triplicate out of at least three independent experiments. Error

bars represent standard deviation. (B) Coomassie staining showing a representative purification of the IgD protein used in

the chemotaxis experiments. ***P<0.0005.

https://doi.org/10.1371/journal.ppat.1006346.g006
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Discussion

Following primary infection of epithelial cells in the respiratory tract, VZV infects and repli-

cates in dendritic and T cells allowing systemic dissemination of the virus [11, 12, 61]. The cel-

lular and viral factors responsible for hijacking leukocytes are not fully known. We have

identified a VZV protein, gC, that enhances chemokine-dependent leukocyte migration. Since

VZV gC is expressed with true late kinetics [62, 63], when infectious viral particles are pro-

duced, gC may facilitate the recruitment and infection of leukocytes and optimize virus dis-

semination within the infected individual.

We showed that cell-free VZV enhanced chemokine activity and that this activity is par-

tially dependent on gC. VZV is strictly cell associated in vitro and has been found in a cell-free

Fig 7. VZV rSgC enhancement of chemokine activity requires interaction with the chemokine and subsequent signalling through the

chemokine receptor. Transwell experiment showing the effect of pertussis toxin (PTX) (A) or AMD3100 (B) on the chemotaxis of Jurkat T cells

towards increasing concentrations of CXCL12-α alone or in the presence of 1:200 molar ratio of chemokine:rSgC. The arrows in (A, B) point to the

condition with rSgC only, without chemokine. Transwell experiment showing the migration of THP-1 cells (C, D) towards increasing concentrations of

wild type or mutated CCL5 (C) or CCL3 and CCL5 (D) alone or in the presence of 1:200 molar ratio of chemokine:IgD (C) or chemokine:rSgC (D). In all

experiments the chemokine was incubated alone or together with VZV rSgC at 37˚C in a humidified incubator in the bottom chamber of the transwell

prior to the addition of the leukocytes to the top chamber. Migrated cells were detected in the lower chamber at the end of the experiment. Plots show

one representative assay performed in triplicate out of at least three independent experiments. Error bars represent standard deviation. *P<0.05;

**P<0.005; ***P<0.0005.

https://doi.org/10.1371/journal.ppat.1006346.g007
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form in suprabasal keratinocytes and blister fluid in vivo [64]. To our knowledge, secretion of

cell-free virus by VZV-infected cells in the respiratory mucosa has not been described. Impor-

tantly, the gC enhancing effect was also observed with primary human tonsillar leukocytes.

We hypothesise that VZV gC enhances their migration to the initial site of infection. The role

of VZV gC in vivo is not completely understood, in part due to the difficulties of studying

VZV infection in animal models. We do not know at which step of the VZV lytic cycle gC

activity may play a role but our data indicate that it is also active at the level of the viral parti-

cles. Virion-associated gG from HSV also enhances chemokine-mediated migration [65].

VZV gC is relevant for the infection of human skin cells in a humanized severe combined

Fig 8. Characterization of recombinant VZV lacking gC expression. (A) Western blots showing expression of gC (left

panel), mGFP (middle panel) and gE (right panel) in cell lysates of ARPE-19 cells infected with pOka-WT or pOka-ΔgC-

mGFP (VZV WT and VZV ΔgC-mGFP, respectively). The gE and gC panels show the same blot subjected to sequential

antibody staining following stripping of the membrane. (B) Western blots showing presence of gC (left panel) or gE (right

panel) in cell-free VZV produced from MeWo cells infected with pOka-WT or pOka-ΔgC-mGFP (VZV WT and VZV ΔgC-

mGFP, respectively). The two panels show the same blot subjected to sequential antibody staining following stripping of the

membrane. (C) Representative electron micrograph of cell-free pOka-WT or pOka-ΔgC-mGFP (VZV WT and VZV ΔgC-

mGFP, respectively) subjected to negative staining. Arrows point to enveloped virions, arrowheads to capsids. The

magnification bar represents 200 nm.

https://doi.org/10.1371/journal.ppat.1006346.g008
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immunodeficiency mouse model [40]. Lack of gC seems to result in diminished spread

through the epidermis towards the dermis, which could be due to impairment of infection of

polarized epithelial cells [40]. Chemokine interaction with its receptor leads to the activation

of signalling proteins resulting in disassembly of tight junctions and actin remodelling among

other processes [66–68]. One could envisage that an increased GPCR signalling involving gC-

chemokine interaction with the cognate chemokine receptor may facilitate the early steps of

viral infection of polarised epithelial cells. Finally, gC activity could be relevant for VZV-asso-

ciated pathology since chemokines can modify neuronal activity and induce pain [37, 38]. Fur-

ther experiments are required to determine the role of gC-mediated chemokine enhancement

in vivo.

Chemokines orchestrate the migration and activity of leukocytes and play key roles in the

interplay between the innate and adaptive immune response. We show here that VZV rSgC

binds a broad range of CXC and CC chemokines with nanomolar affinity and therefore acts as

a novel vCKBP. vCKBP have been described in poxviruses [69–77] and in herpesviruses [33,

46, 47, 78–80]. Notably, this report constitutes the first description of a vCKBP in VZV. This is

particularly relevant since VZV does not contain US4, the gene encoding the vCKBP expressed

by several alphaherpesviruses [33, 80–83]. Moreover, VZV rSgC is novel since it binds a large

number of chemokines specifically from the CXC and CC subfamilies and, especially, because

it enhances their activity, something only previously observed for HSV gG [34]. However,

HSV-1 and HSV-2 rSgG bind a reduced number of CXC and CC chemokines. The wider

interacting range of gC probably reflects the relevance of leukocytes during VZV primary

infection. The fact that only human alphaherpesviruses express a vCKBP with the ability to

enhance chemokine activity may reflect yet unknown evolutionary requirements. Enhance-

ment of chemokine function is similar to the activity of human synergistic or cooperative che-

mokines, which enhance the chemotactic properties of other chemokines [54]. Three different

Fig 9. VZV enhances chemokine-dependent migration of T cells and gC is partially responsible for this effect. (A) Graph showing the

number of Jurkat T cells migrating towards 2.8 μl of pOka-WT or pOka-ΔgC-mGFP (VZV WT and VZV ΔgC-mGFP, respectively) cell-free VZV

alone or together with chemokine in a transwell assay. Similar amounts of cell-free VZV were used based on gE expression. Migrated cells were

detected in the lower chamber at the end of the experiment. Plots show one representative assay performed in triplicate out of at least three

independent experiments. Error bars represent standard deviation. (B) Western blot showing similar level of gE in pOka-WT or pOka-ΔgC-mGFP

(VZV WT and VZV ΔgC-mGFP, respectively) cell-free VZV used in the chemotactic assay. *P<0.05; **P<0.005.

https://doi.org/10.1371/journal.ppat.1006346.g009
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mechanisms that can explain chemokine cooperation between different chemokines have been

postulated. One involves the convergence of signalling pathways triggered by independent

interactions between the chemokines and their respective receptors [84–86]. Another requires

GAG competition between cooperative chemokines resulting in higher levels of free chemo-

kine that interact with its receptor [55]. The third one postulates that the formation of hetero-

meric complexes between the chemokines is required for synergy [87–89]. In the case of

vCKBP that enhance chemokine activity, e.g., HSV rSgG and VZV rSgC, convergence signal-

ling does not seem to be responsible for the mechanism of action since the vCKBPs alone do

not induce chemotaxis or even signalling as shown here and previously [34]. Moreover, addi-

tion of AMD3100 and the lack of enhancement when the Met-CCL5 mutant is used indicate

that the activity requires binding of the chemokine to its receptor and subsequent signalling.

GAG interaction could play a relevant role since both HSV rSgG and VZV rSgC interact with

the plasma membrane through a high affinity interaction with GAGs, as shown here and previ-

ously [49]. However, interaction with GAGs, for VZV rSgC at least, does not seem to be rele-

vant for enhancing chemokine activity in vitro, since an rSgC construct lacking GAG binding

(VZV IgD) enhances chemokine activity as efficiently as the full-length rSgC. However, in
vitro transwell experiments may not provide sufficient information regarding the role of

GAGs in chemotaxis. In vivo, lack of GAG interaction could result in loss of gC activity as

shown for an interferon binding protein expressed by vaccinia virus [90]. Similar to some

human synergistic chemokines, the mechanism of action of VZV rSgC involves chemokine

interaction and signalling through the chemokine receptor.

Overall, we identified gC as a protein potentially involved in the recruitment of leukocytes

by the highly infectious, neurotropic human pathogen VZV. Our data clearly show that VZV

gC enhances leukocyte migration through modulation of chemokine activity, a phenomenon

that could facilitate VZV infection of leukocytes and subsequent spread. Furthermore, since

chemokines can induce pain [91], enhancement of their activity could play a role in VZV asso-

ciated pathology. Further investigations are required to understand the relevance of VZV gC

activity in the context of VZV spread and pathogenesis in vivo.

Materials and methods

Ethical statement

The human tonsil specimens were obtained in the context of surgical interventions (ethical

approval number 1916–2013), the experiments were performed according to the approved

guidelines.

Cells and viruses

Hi-5 adherent insect cells were grown in Grace insect medium (Sigma-Aldrich, Germany)

supplemented with 10% FBS. Hi-5 and Schneider’s Drosophila melanogaster Line 2 (S2) cells

suspension insect cells were grown in Insect Xpress medium (Lonza) without serum. For

transfection with the construct P-068 encoding for IgD-Strep (see below) S2 cells were grown

in Schneider’s Drosophila medium (Gibco by Life Technologies) supplemented with 10% FBS.

Stably transfected S2 cells were grown in Insect-Xpress medium supplemented with 8 μg/mL

puromycin (Invivogen). All insect cells were grown at 28˚C. Jurkat T cells E6.1 and THP-1

(both provided by Martin Messerle, Hannover Medical School, Germany) and Macrophage-

monocyte 1 (MonoMac-1) cells (a gift from Antonio Alcami, Centro de Biologı́a Molecular

Severo Ochoa, Madrid, Spain) were grown in RPMI 1640 (Gibco) supplemented with 10%

FBS. CHO-K1 and CHO-pgsB-618 [48] (CHO-618, provided by Antonio Alcami) were grown

in DMEM-F12 (Gibco) 1:1 medium containing 10% FBS. Human melanoma MeWo cells were
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purchased from American Type Culture Collection (ATCC-HTB-65) and grown in DMEM

containing 10% FBS. Human lung fibroblast MRC-5 cells and human retinal epithelial ARPE-

19 cells were a gift from Martin Messerle. MRC-5 were grown in DMEM containing 10% FBS

and ARPE-19 were grown in DMEM/Nutrient mixture F-12 Ham medium (Sigma) contain-

ing 8% FBS. All mammalian cell lines were cultured at 37˚C, 5% CO2 in a humidified incuba-

tor. Tonsillar leukocytes were prepared as previously described [92].

VZV Dumas strain [36] (a gift of Andrew Davison, University of Glasgow, U.K.) was main-

tained in MRC-5 cells. Bacterial artificial chromosome (BAC)-derived VZV pOka strain was a

gift from Nikolaus Osterrieder (Freie Universität Berlin, Germany). The virus was reconsti-

tuted in MeWo cells using Lipofectamin 2000 (ThermoFisher, see below).

Cloning, expression and purification of recombinant proteins

The coding sequences for the ectodomains of VZV SgC, SgB and SgI without their putative sig-

nal peptides and SgC truncated constructs (IgD and R2D) were cloned into pFastBacMel [34].

The genbank accession number for the Dumas strain is NC_001348.1. The gene IDs are

1487660, 1487662 and 1487689 for gC, gB and gI, respectively. The resulting DNA constructs

contain the honey bee melittin signal peptide followed by an N-Terminal His-tag and the VZV

glycoprotein ectodomain sequence. VZV rSgC, rSgB and rSgI ectodomains were amplified

from DNA obtained from MRC-5 cells infected with VZV Dumas strain [36]. The following

primers were used: 5’-TATGGCGCCCCCACACCCGTAAGTATAACT-3’ and 5’-TATTTA

GGTACCTTAAACGGAAAATGTAGTGGC-3’ containing NarI and KpnI sites, respectively,

for rSgC; 5’-TATTATGGCGCCGTTGTGTCGGTCTCTCCAAGC-3’ and 5’-TATTTACGT

ACGTTACCCAAATGGGTTAGATAAAAA-3’ containing NarI and SphI sites, respectively,

for rSgB and 5’-TATTATGGCGCCATCTTCAAGGGCGACCAC-3’ and 5’-AATTATCGTA

CGTTATTCTGGAGGATCATTAAGGGA-3’ containing NarI and SphI sites, respectively, for

rSgI. Truncated rSgC constructs, IgD and R2D, were amplified from pFastBacMel-rSgC plas-

mid using the primers 5’-TATGGCGCCCCCACACCCGTAAGTATAACT-3’ and 5’-TATT

TAGGTACCAAAAGGTGGTTGTGAATG-3’ containing NarI and KpnI sites, respectively,

for R2D and 5’-TATGGCGCCCCCGCAGCCAACAACCAA-3’ and 5’-TATTTAGGTACCT

TAAACGGAAAATGTAGTGGC-3’ containing NarI and KpnI sites, respectively, for IgD. All

plasmids were sequenced to ensure the lack of mutations. Recombinant baculoviruses were

obtained following transformation of the respective pFastBacMel plasmid DNA into DH10Bac

cells and subsequent transfection of the recombinant bacmids into Hi-5 adherent insect cells

using Lipofectamine 2000 (Invitrogen). The supernatant of infected adherent Hi-5 cells was

collected at 72 hours post infection to perform heparin-pulldown experiments. Recombinant

proteins (rSgC, IgD and R2D) were purified from the supernatant of infected Hi-5 suspension

cells 84 hours post infection with recombinant baculovirus by affinity chromatography using

Nickel beads (Qiagen), as before [81]. To express large amounts of IgD the VZV IgD sequence

(amino acids 140–531, Dumas strain) was amplified using oligonucleotides 5’-TATTTAAC

TAGTAACGGAAAATGTAGTGGC-3’ and 5’-TATAGATCTCCCGCAGCCAACACCCAA-

3’ containing SpeI and BglII, respectively, and cloned into a Drosophila melanogaster expres-

sion plasmid [53]. The resulting construct (P-068) contains the Drosophila immunoglobulin

binding chaperone protein signal peptide (BiP), IgD and a C-terminal segment coding for a

specific proteolytic cleavage site, followed by a Twin-Strep-Tag, secreting soluble IgD-Strep

into the supernatant. The plasmid was sequenced to ensure the lack of undesired mutations.

This plasmid was co-transfected into Schneider’s Drosophila melanogaster S2 cells together

with a dominant selectable marker encoding a puromycin resistance gene to generate a stable

cell line as described before [93]. For transfection S2 cells were in Schneider’s Drosophila
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medium (Gibco by Life Technologies) supplemented with 10% FBS. The transfection reagent

used was Effectene Enhancer (QIAGEN). The expression of the recombinant IgD-Strep was

induced by adding 4 μM cadmium chloride to cells growing at a density of 6–9 x 106 cells/ml.

IgD-Strep was purified from the supernatant of S2 cells by affinity chromatography using a

Strep-Tactin Superflow high capacity column (IBA GmbH, Germany). The affinity-purified

protein was subjected to size exclusion chromatography using a HiLoad 26/600 Superdex 200

pg (GE Healthcare Life Sciences). The resulting IgD-Strep protein was used to generate a rab-

bit polyclonal antibody targeting the VZV gC IgD.

The purity and concentration of all purified proteins was determined by comparing Coo-

massie R250 (TH. Geyer) stained bands of recombinant protein with a BSA standard curve

loaded in the same gel. Purified recombinant proteins were detected by SDS-PAGE and West-

ern blotting using mouse monoclonal antibodies diluted in PBS Tween containing 3% milk

targeted to either the His-tag (Qiagen) or the recombinant protein. The anti gC antibody has

been previously characterized [45]. The generation of the anti IgD-Strep antibody is described

below. Fluorescently labelled antibody was used as secondary antibody and the signal was

detected with Licor (Odissey). Recombinant, purified M3 and rSgG2 were provided by Anto-

nio Alcami.

Generation of a polyclonal antibody to the VZV IgD construct

Purified recombinant IgD-Strep was used to inject two rabbits at Davids Biotechnology (Ger-

many). IgD anti-serum was obtained at day 63 post-immunization.

Chemokines

Recombinant human chemokines used in SPR experiments (CXCL1, CXCL2, CXCL3,

CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12-α, CXCL12-

β, CXCL13, CXCL14, CXCL16, CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11,

CCL14 (66 aa), CCL14 (72 aa), CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21,

CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CX3CL1 and XCL1), or in chemo-

taxis experiments (CXCL12-α, CCL2, CCL3, CCL5 and CCL7) were from Peprotech and were

reconstituted in 1x PBS with 0.1% BSA as a carrier protein.

Determination of rSgC-chemokine binding specificity and affinity

constants using SPR technology

To determine whether VZV rSgC bound human chemokines and to calculate the affinity con-

stants of such interactions we performed SPR experiments with a BIAcore X-100 biosensor

(GE Healthcare). All chips were purchased from GE Healthcare. In all experiments with rSgC,

IgD, R2D and IgD-Strep, the recombinant proteins were amine-coupled in acetate buffer pH

5.0. Binding screenings and experiments to calculate the association and dissociation constants

(ka and kd, respectively) of the interactions were performed using CM4 chips. Screening exper-

iments with IgD-Strep were carried out with a CM5 chip containing 2864 immobilised R.U.

The number of R.U. coupled in the CM4 chips were 774.8 for rSgC, 611 for IgD and 245.7 for

R2D (Rmax< 100 RU). The differences in the number of immobilised units are due to the dif-

ferent molecular weights of the recombinant proteins (72.5 kDa for rSgC, 55 kDa for IgD and

22.5 kDa for R2D). To detect immobilised R2D, a mouse monoclonal anti gC antibody [45]

was injected at a concentration of 10 ng/μL during 90 s. Recombinant chemokines (Peprotech)

reconstituted in PBS containing 0.1% BSA were injected at 100 nM in HBS-EP buffer (10 mM

HEPES, 150 mM, NaCl, 3 mM EDTA, 0.005% (v/v) surfactant P20, pH 7.4) at a flow rate of

30 μl/min for screening experiments (90 s contact time, 60 s dissociation). Multi-cycle kinetics
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experiments were carried out by injecting different concentrations of the chemokine at 30 μl/

min (180 s contact time, 600 s dissociation). In all cases the chip surface was regenerated after

each chemokine injection with 10 mM glycine–HCl pH 2.0. All BIAcore sensorgrams were

analysed with the Biacore X100 Evaluation Software. Bulk refractive index changes were

removed by subtracting the reference flow cell responses, and the average response of a blank

injection was subtracted from all analyte sensorgrams to remove systematic artefacts. Kinetic

data were globally fitted to a 1:1 Langmuir model. When required, NSB Reducer (GE Health-

care) was used to reduce non-specific binding to the dextran matrix of the chips.

Chemotaxis assays

Different chemokine concentrations, alone or in combination with purified recombinant VZV

rSgC, R2D, IgD or cell-free VZV, were placed in the lower compartment of a 96-well Che-

moTx System plate (Neuro Probe Inc., MD, USA) in RPMI 1640, with the exception of the

cell-free virus, which was present in PBS. Similar amounts of cell-free VZV controlled by viral

titre and protein expression were used. As controls, R-1 medium or recombinant protein

alone in R-1 medium, or cell-free virus alone in PBS, were used. The cells (Jurkat, MonoMac-

1, THP-1 or human tonsillar leukocytes, at a concentration of 5x106/ml) were separated from

the lower chamber by a 3 μm (for MonoMac-1 cells and tonsillar leukocytes) or 5 μm filter

(Jurkat cells and THP-1). The cells were incubated at 37˚C for 2–3 h in a humidified incubator

with 5% CO2. The number of migrated cells in the lower chamber was determined by staining

with 5 μl of CellTiter 96 aqueous one solution cell proliferation assay (Promega, WI, USA)

during 1.5 h at 37˚C, with 5% CO2, measuring absorbance at 490 nm and comparing the

absorbance values with those of a standard curve obtained using known cell numbers. The

number of migrated THP-1 and tonsillar leukocytes was determined using a light microscope

as they did not react to CellTiter 96 aqueous one solution cell proliferation assay. To determine

the effect of PTX (Tocris) on cell migration, we incubated 0.1 μg/ml of PTX with Jurkat cells

overnight prior to the chemotaxis experiment. To address whether CXCL12-α receptor was

involved in rSgC mechanism of action, Jurkat T cells were incubated with 6.3 nM AMD3100

in R-1 medium during 15 minutes at room temperature, prior to the chemotaxis experiments.

The cells were tested without washing the drug to avoid receptor reactivation [94]. To address

the effect of possible non-proteinaceous elements in our protein preparation, we incubated

rSgC with proteinase K at a concentration of 60 nM at 44˚C for 30 min followed by heat-inac-

tivation (95˚C during 20 min).

Cell binding assays

CHO-K1 and CHO-618 cells detached with PBS-EDTA were incubated with 1.5 μM of puri-

fied rSgC, IgD, R2D, M3 and rSgG2 for 20 min at 4˚C. Following three washing steps with PBS

at 4˚C, the cells were incubated with 10 μg/ml of anti His-tag antibody (QIAGEN) followed by

incubation with 4 μg/ml of alexa fluor 488-conjugated anti mouse antibody (Thermofisher sci-

entific). Three washing steps with PBS at 4˚C were carried out after each antibody incubation

step. The data were collected on a FACS FC500 (Beckman and coulter) and analysed using

FlowJo.

Determination of rSgC-GAG binding specificity using SPR technology

Biotinylated heparin was coupled on a Biacore SA chip (252 RU) using the SA-biotin capture

method. Briefly, immobilization buffer (1M NaCl and 50 mM NaOH) was injected followed

by injection of biotinylated heparin in H2O and addition of 50 mM NaOH, 1M NaCl, 50% iso-

propanol. To determine the specificity of the interaction between rSgC and heparin, rSgC was
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injected at a flow rate of 10 μl/min (90 s contact time, 60 s dissociation) at a concentration of

1.8 ng/μl in presence of different amounts of heparin (Sigma-Aldrich, Germany) at a rSgC:

heparin ratio (w:w) of 1:0; 1:0.1; 1:0.5; 1:1; 1:10; 1:100; 1:1000.

Heparin pull-down assay

Supernatants from Hi-5 adherent cells containing recombinant proteins were incubated with

heparin-sepharose beads (Sigma-Aldrich, Germany) for 1.5 h at 4˚C. Recombinant proteins

were detected with the anti His-tag antibody by Western blotting prior to the pulldown to

ensure that similar amounts of all recombinant proteins were used in the assay. The binding of

recombinant proteins to the heparin-beads was competed by adding 0.1 to 2 mg of soluble

heparin (Sigma-Aldrich, Germany) to the binding reaction. As negative control, agarose beads

lacking heparin were used (Sigma-Aldrich, Germany). The beads were washed three times

with PBS and the proteins were eluted with denaturalizing loading buffer for SDS-PAGE. The

presence of the recombinant proteins was detected by Western blotting using the anti His-tag

antibody.

Generation of recombinant VZV lacking ORF14 expression

Recombinant VZV lacking gC expression was generated using the BAC technology and en-
passant mutagenesis as described previously [60, 95]. The constructed mutant is based on the

infectious BAC of the pOka strain previously generated [96]. To abrogate gC expression

ORF14 was replaced by a monomeric GFP (mGFP)-cassette (BAC-pOka-ΔgC-mGFP). The

BAC was mutated in ORF14 by insertion of a mGFP-Kanamycin resistance (KanR) cassette in

which an excisable KanR gene disrupts the mGFP ORF. The KanR is flanked by a duplicated

fragment of mGFP sequence and I-SceI restriction sites, which allows subsequent excision of

KanR and the seamless repair of the mGFP ORF by Red recombination in E.coli strain

GS1783 [60]. The cassettes were amplified by PCR with the plasmid pEP-mGFP-in [97] as

template and using the primers “For”: 5’-TTTATTTAAGGGGAGCGTGGATGTGTCAA

TAAAAACCAGGATGGTGAGCAAGGGCGAGGA-3’ and “Rev”: 5’-AATAAAATGATA

TACACAGACGCGTTTGGTTGGTTTCTGTTTACTTGTACAGCTCGTCCATG-3’ to

replace the gC with the mGFP gene in the BAC. Successful recombination was confirmed by

restriction analysis (NheI + XbaI double digest) and Illumina sequencing (MiSeq) of the viral

genomes.

To reconstitute infectious recombinant viruses MeWo cells were transfected with fresh

BAC DNA using Lipofectamin 2000 (ThermoFisher) in a 6-well plate (10 μl Lipofect + 10–

50 μl of BAC-VZV DNA), resulting in the recombinant virus pOka-ΔgC-mGFP used in this

manuscript. Lipofect-DNA complexes were produced in OptiMEM and dripped onto subcon-

fluent (~80%) MeWo cells. After 24 h medium was changed and cells were incubated with

maintenance splits of cells every week until formation of syncytia. The expression of mGFP,

gC and gE was assessed by western blotting using a monoclonal commercial antibody for GFP

(Clontech) and previously described mouse monoclonal antibodies for gC and gE [45].

VZV replication kinetics

Subconfluent ARPE-19 cells (approx. 80% confluency) were infected with VZV by adding

infected MeWo cells (equivalent to 100 plaque forming units (pfu)/well). Cultures were then

incubated for 6 days and at each time point respective cultures were 1x rinsed with PBS and

then trypsinized with 100 μl trypsin-EDTA solution (GIBCO) for 5 min. 400 μl medium

(DMEM+20% FCS) was then added and the cells were washed off the well. This cell suspen-

sion was then combined with 500 μl medium + DMSO (DMEM + 20% FCS + 20% DMSO)
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and the cells were frozen using an isopropanol chamber. All samples were then analysed in

parallel in a plaque assay by infecting subconfluent ARPE-19 cells with 250 μl of cell suspen-

sion in 5-fold dilution series. Cells were incubated for 4 days and plaques were counted using a

light microscope.

Generation of cell-free VZV

10 p150 dishes containing MeWo cells at 90–100% confluency were infected with cell-associ-

ated VZV (pOka, pOka-ΔgC-mGFP) and harvested in PBS when 30–50% of cells showed cyto-

pathic effect. The cells were sonicated (3 times during 15 s with a 15 s interval) on ice with a

Bandelin Sonorex RK100 sonicator and centrifuged during 15 min at 1,000 x g and 4˚C. The

supernatant was transferred to a new tube and mixed with ice cold Lenti-X concentrator

(Clontech) at a Lenti-X:supernatant ratio of 1:4. The solution was incubated during 2 hours at

4˚C followed by 45 min centrifugation at 1,500 x g and 4˚C. The supernatant was collected and

centrifuged through a 10% (w/v) Nycodenz (Axis-Shield PoC) cushion in PBS at 34766.4 g and

4˚C. The resulting pellet was resuspended in PBS, aliquoted and stored at -80˚C.

Negative staining of cell-free VZV

For negative staining cell-free VZV preparations were adsorbed onto carbon and Formvar-

film coated 400 mesh copper grids (Stork Veco). After washing with PBS and distilled water,

preparations were negative stained using 2% (w/v) uranyl acetate, and analyzed with a Mor-

gani (FEI, Einthoven, Netherlands) transmission electron microscope at 80 kV.

Statistical analysis

The significant value (P value) was calculated by performing unpaired Student T-test using

GraphPad Prism.

Supporting information

S1 Fig. Expression and purification of recombinant IgD-Strep to generate a rabbit poly-

clonal antibody. (A) Schematic representation of full-length VZV gC (top) and the derived

construct to express soluble VZV IgD containing a Twin-Streptavidin tag (IgD-Strep, bottom)

in S2 insect cells. Numbers indicate amino acid positions within VZV gC Dumas strain. The

VZV gC signal peptide (SP) was substituted by that of the Drosophila immunoglobulin bind-

ing chaperone protein (BiP) to improve secretion in S2 insect cells. A Twin-Streptavidin

(Strep) tag was introduced at the C-terminus to facilitate purification of IgD by affinity chro-

matography. (B) Purified IgD-Strep was detected by Coomassie staining. (C) Sensorgram

showing association and dissociation phases of the interaction between IgD-Strep immobilised

in a CM5 chip and selected chemokines injected at a concentration of 100 nM. The arrow indi-

cates the end of the chemokine injection. Positive (CXCL13, CXCL12-α, CXCL2 and CCL19)

and negative (CX3CL1) interactions are shown. (D) Chemotaxis of Jurkat cells towards

increasing concentrations of CXCL12-α alone or in the presence of a 1:200 molar ratio of che-

mokine:IgD or chemokine:IgD-Strep. The chemokine alone or together with IgD or IgD-Strep

was incubated in the bottom chamber of the transwell at 37˚C in a humidified incubator prior

to the addition of the leukocytes to the top chamber. Migrated cells were detected in the lower

chamber at the end of the experiment. Plots show one representative assay performed in tripli-

cate out of at least three independent experiments. Error bars represent standard deviation.

Abbreviations: RU, resonance units. kDa, kiloDaltons.���P<0.0005.

(TIF)
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S2 Fig. Recombinant VZV rSgC preparation lacks non-proteinacious contaminants poten-

tiating chemokine activity. Chemotaxis of Jurkat T cells towards 1 nM (A) or 2 nM (B) of

CXCL12-α alone or in the presence of a 1:33 (A, B), 1:66 or 1:270 (A) molar ratio of chemo-

kine:rSgC. 1:270 molar ratio of chemokine:proteinase K-treated VZV rSgC (PKrSgC) was used

as control (A). (C) Chemotaxis of THP-1 cells towards 3 nM of CCL5 alone or in the presence

of a 1:15 molar ratio of chemokine:rSgC. The chemokine alone or together with VZV rSgC

was incubated in the bottom chamber of the transwell at 37˚C in a humidified incubator prior

to the addition of the leukocytes to the top chamber. Migrated cells were detected in the lower

chamber at the end of the experiment. Plots show one representative assay performed in tripli-

cate out of at least three independent experiments. Error bars represent standard deviation.
�P<0.05; ��P<0.005; ���P<0.0005.

(TIF)

S3 Fig. VZV IgD binds CCL5 mutants. Sensorgram showing the association and dissociation

phases of the interaction between IgD and two CCL5 mutants, Met-CCL5 and CCL5-E66A,

injected at a concentration of 100 nM. The arrow indicates the end of the chemokine injection.

Abbreviations: RU, resonance units.

(TIF)

S4 Fig. rSgC enhancement activity requires interaction with the chemokine. Chemotaxis of

MonoMac-1 cells towards increasing concentrations of CXCL12-α or CCL3 alone or in the

presence of a 1:200 molar ratio of chemokine:rSgC. The chemokine was incubated with or

without VZV rSgC at 37˚C in a humidified incubator prior to the addition of the leukocytes to

the top chamber. Migrated cells were detected in the lower chamber at the end of the experi-

ment. Plots show one representative assay performed in triplicate out of two independent

experiments. Error bars represent standard deviation. �P<0.05; ��P<0.005; ���P<0.0005.

(TIF)

S5 Fig. Lack of gC expression does not hinder VZV replication kinetics. Graph showing the

replication kinetics of pOka-WT and pOka-ΔgC-mGFP in ARPE-19 cells. To measure replica-

tion kinetics, ARPE-19 cells were infected with MeWo-associated virus and the cells were col-

lected at different days post infection. These ARPE-19 cells were later added on naïve ARPE-

19 cells and the number of plaque forming units per ml (PFU/ml) was determined at 72 hours

post infection.

(TIF)
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