45 research outputs found
MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations
The development of Imatinib Mesylate (IM), the first specific inhibitor of BCR-ABL1, has had a major impact in patients with Chronic Myeloid Leukemia (CML), establishing IM as the standard therapy for CML. Despite the clinical success obtained with the use of IM, primary resistance to IM and molecular evidence of persistent disease has been observed in 20-25% of IM treated patients. The existence of second generation TK inhibitors, which are effective in patients with IM resistance, makes identification of predictors of resistance to IM an important goal in CML. In this study, we have identified a group of 19 miRNAs that may predict clinical resistance to IM in patients with newly diagnosed CML
Myocardial infarction ´through the window´: dual dynamics for cardiac fibroblasts activation
Activated cardiac fibroblasts (CFs) are responsible for the healing of the heart tissue after a myocardial infarction (MI). Based on high throughput technologies, several groups have recently demonstrated their heterogeneity and a unique role of each subpopulation of CFs during the ventricular remodelling process. This is relevant towards the discovery of personalized treatments to control the initial post-MI healing scar that will contribute to preserve ventricular function and prevent the onset of heart failure. However, little is known about the moment that CFs are activated, and which genes are potentially involved in this process. Using a mouse model for MI and single cell RNA-Seq, we demonstrate that the activation of Reparative Cardiac Fibroblasts (RCFs), the CFs responsible for the healing scar, happens within the first week after MI. Interestingly, our data reveals that all CFs show high expression of the top markers genes for RCF in a specific moment, but only few of them finally evolve to an RCF transcriptomic identity. Furthermore, we describe two different molecular dynamics that could give rise to this activation and, in consequence, the appearance of definitive RCFs. Using Spatial Transcriptomics, we localized the genes related to each dynamic in different anatomical regions of the infarcted heart, but, remarkably, only one persists seven days after MI. These results highlight the existence of a specific “window of activation” of RCFs at the beginning of the ventricular remodelling process. This potential ´therapeutical window´ could allow us to regulate the size of the healing scar and, in consequence, the poor prognosis for patients that have suffered an ischemic event.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia
Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL). Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly, the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect activation of TP53 pathway with 5-aza-2'-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells. The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of the patients, which significantly correlated with a higher relapse (p = 0.001) and mortality (p<0.001) rate being an independent prognostic factor for disease-free survival (DFS) (p = 0.006) and overall survival (OS) (p = 0.005) in the multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL
Natural Hydrogels Support Kidney Organoid Generation and Promote in vitro Angiogenesis
To date strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized extracellular matrix (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features, and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique culture cell platforms for personalized medicine
A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells
Altres ajuts: European Research Council (ERC); EIT Health under grant ID 20366 (R2U-Tox-Assay); IBEC Faster Future program (A por la COVID-19); European Regional Development Fund (FEDER); Gobierno de Navarra, Departamento de Desarrollo Económico y Empresarial (AGATA 0011-1411-2020-000011, DIANA 0011-1411-2017-000029); Ministerio de Economía y Competitividad (MINECO); IBEC International PhD Programme "La Caixa" Severo Ochoa fellowships (LCF/BQ/SO16/52270019); start-up funds from the College of Medicine at the University of Florida, Gainesville; T. von Zastrow Foundation; the FWF Wittgenstein award (Z 271-B19); the Austrian Academy of Sciences and the Canada 150 Research Chairs Program (F18-01336); the Canadian Institutes of Health Research COVID-19 (F20-02343, F20-02015); Swiss National Science Foundation fellowship (P400PM_194473/1); Swedish Research Council (2018-05766); the Innovative Medicines Initiative 2 Joint Undertaking (JU 101005026); Ayudas Fundación BBVA a Equipos de Investigación Científica SARS-CoV-2 y COVID-19 through the project "Identifying SARS-CoV-2-host cell interactions exploiting CRISPR-Cas9-engineered human organoids: through the development of specific therapies against COVID19"; Fundació la Marató de TV3 (201910-31 and 202125-3).It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism
Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide
While myelodysplastic syndromes with del(5q) (del(5q) MDS) comprises a well-defined hematological subgroup, the molecular basis underlying its origin remains unknown. Using single cell RNA-seq (scRNA-seq) on CD34 + progenitors from del(5q) MDS patients, we have identified cells harboring the deletion, characterizing the transcriptional impact of this genetic insult on disease pathogenesis and treatment response. Interestingly, both del(5q) and non-del(5q) cells present similar transcriptional lesions, indicating that all cells, and not only those harboring the deletion, may contribute to aberrant hematopoietic differentiation. However, gene regulatory network (GRN) analyses reveal a group of regulons showing aberrant activity that could trigger altered hematopoiesis exclusively in del(5q) cells, pointing to a more prominent role of these cells in disease phenotype. In del(5q) MDS patients achieving hematological response upon lenalidomide treatment, the drug reverts several transcriptional alterations in both del(5q) and non-del(5q) cells, but other lesions remain, which may be responsible for potential future relapses. Moreover, lack of hematological response is associated with the inability of lenalidomide to reverse transcriptional alterations. Collectively, this study reveals transcriptional alterations that could contribute to the pathogenesis and treatment response of del(5q) MDS. The hematopoiesis of patients with del(5q) Myelodysplastic Syndromes is composed of a mixture of cells with and without the deletion. Here, the authors show that del(5q) and non-del(5q) cells share similar transcriptional alterations, with del(5q) cells presenting additional lesions. Moreover, hematological response to lenalidomide is associated with the reversal of some transcriptional lesions in both del(5q) and non-del(5q) cells
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies
The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.We particularly acknowledge the Biobank of the University of Navarra for its collaboration. We thank Dr Edorta Martínez de Marigorta and Dr Francisco Palacios from Departamento de Química Orgánica I, Facultad de Farmacia, Universidad del Pais Vasco for 13C NMR determination and Angel Irigoyen Barrio and Dr Ana Romo Hualde, from University of Navarra, for HRMS determination. Dr. Irene de Miguel Turrullols from Small Molecule Discovery Platform, CIMA, University of Navarra is acknowledged for NMR data interpretation. This work was funded by grants from Instituto de Salud Carlos III (ISCIII) PI10/01691, PI13/01469, PI14/01867, PI10/2983, TRASCAN (EPICA), CIBERONC, cofinanciacion FEDER, RTICC RD12/0036/0068, Fundació La Marató de TV3 (20132130-31-32) and ‘Fundación Fuentes Dutor’. B.P. is supported by a Sara Borrell fellowship CD13/00340 and X.A. is a Marie Curie researcher under contract ‘LincMHeM-330598’.S
CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome
Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response
Tumor cells in light-chain amyloidosis and myeloma show distinct transcriptional rewiring of normal plasma cell development
Although light-chain amyloidosis (AL) and multiple myeloma (MM) are characterized by tumor plasma cell (PC) expansion in bone marrow (BM), their clinical presentation differs. Previous attempts to identify unique pathogenic mechanisms behind such differences were unsuccessful, and no studies have investigated the differentiation stage of tumor PCs in patients with AL and MM. We sought to define a transcriptional atlas of normal PC development in secondary lymphoid organs (SLOs), peripheral blood (PB), and BM for comparison with the transcriptional programs (TPs) of tumor PCs in AL, MM, and monoclonal gammopathy of undetermined significance (MGUS). Based on bulk and single-cell RNA sequencing, we observed 13 TPs during transition of normal PCs throughout SLOs, PB, and BM. We further noted the following: CD39 outperforms CD19 to discriminate newborn from long-lived BM-PCs; tumor PCs expressed the most advantageous TPs of normal PC differentiation; AL shares greater similarity to SLO-PCs whereas MM is transcriptionally closer to PB-PCs and newborn BM-PCs; patients with AL and MM enriched in immature TPs had inferior survival; and protein N-linked glycosylation–related TPs are upregulated in AL. Collectively, we provide a novel resource to understand normal PC development and the transcriptional reorganization of AL and other monoclonal gammopathies