9 research outputs found

    Perspective on Dentoalveolar Manifestations Resulting from PHOSPHO1 Loss-of-Function: A Form of Pseudohypophosphatasia?

    Get PDF
    Mineralization of the skeleton occurs by several physicochemical and biochemical processes and mechanisms that facilitate the deposition of hydroxyapatite (HA) in specific areas of the extracellular matrix (ECM). Two key phosphatases, phosphatase, orphan 1 (PHOSPHO1) and tissue-non-specific alkaline phosphatase (TNAP), play complementary roles in the mineralization process. The actions of PHOSPHO1 on phosphocholine and phosphoethanolamine in matrix vesicles (MVs) produce inorganic phosphate (P(i)) for the initiation of HA mineral formation within MVs. TNAP hydrolyzes adenosine triphosphate (ATP) and the mineralization inhibitor, inorganic pyrophosphate (PP(i)), to generate P(i) that is incorporated into MVs. Genetic mutations in the ALPL gene-encoding TNAP lead to hypophosphatasia (HPP), characterized by low circulating TNAP levels (ALP), rickets in children and/or osteomalacia in adults, and a spectrum of dentoalveolar defects, the most prevalent being lack of acellular cementum leading to premature tooth loss. Given that the skeletal manifestations of genetic ablation of the Phospho1 gene in mice resemble many of the manifestations of HPP, we propose that Phospho1 gene mutations may underlie some cases of “pseudo-HPP” where ALP may be normal to subnormal, but ALPL mutation(s) have not been identified. The goal of this perspective article is to compare and contrast the loss-of-function effects of TNAP and PHOSPHO1 on the dentoalveolar complex to predict the likely dental phenotype in humans that may result from PHOSPHO1 mutations. Potential cases of pseudo-HPP associated with PHOSPHO1 mutations may resist diagnosis, and the dental manifestations could be a key criterion for consideration

    Gene therapy using recombinant AAV type 8 vector encoding TNAP-D10 improves the skeletal phenotypes in murine models of osteomalacia

    Get PDF
    Hypophosphatasia (HPP), caused by loss‐of‐function mutations in the ALPL gene encoding tissue‐nonspecific alkaline phosphatase (TNAP), is characterized by skeletal and dental hypomineralization that can vary in severity from life‐threatening to milder manifestations only in adulthood. PHOSPHO1 deficiency leads to early‐onset scoliosis, osteomalacia, and fractures that mimic pseudo‐HPP. Asfotase alfa, a life‐saving enzyme replacement therapy approved for pediatric‐onset HPP, requires subcutaneous injections 3 to 6 times per week. We recently showed that a single injection of an adeno‐associated virus vector serotype 8 harboring TNAP‐D(10) (AAV8‐TNAP‐D(10)) effectively prevented skeletal disease and prolonged life in Alpl ( −/− ) mice phenocopying infantile HPP. Here, we aimed to determine the efficacy of AAV8‐TNAP‐D(10) in improving the skeletal and dental phenotype in the Alpl ( Prx1/Prx1 ) and Phospho1 (−/−) mouse models of late‐onset (adult) HPP and pseudo‐HPP, respectively. A single dose of 3 × 10(11) vector genomes per body (vg/b) was injected intramuscularly into 8‐week‐old Alpl ( Prx1/Prx1 ) and wild‐type (WT) littermates, or into 3‐day‐old Phospho1 (−/−) and WT mice, and treatment efficacy was evaluated after 60 days for late‐onset HPP mice and after 90 days for Phospho1 (−/−) mice. Biochemical analysis showed sustained serum alkaline phosphatase activity and reduced plasma PP(i) levels, and radiographic images, micro‐computed tomography (micro‐CT) analysis, and hematoxylin and eosin (H&E) staining showed improvements in the long bones in the late‐onset HPP mice and corrected scoliosis in the Phospho1 ( −/− ) mice. Micro‐CT analysis of the dentoalveolar complex did not reveal significant changes in the phenotype of late‐onset HPP and pseudo‐HPP models. Moreover, alizarin red staining analysis showed that AAV8‐TNAP‐D(10) treatment did not promote ectopic calcification of soft organs in adult HPP mice after 60 days of treatment, even after inducing chronic kidney disease. Overall, the AAV8‐TNAP‐D(10) treatment improved the skeletal phenotype in both the adult HPP and pseudo‐HPP mouse models. This preclinical study will contribute to the advancement of gene therapy for the improvement of skeletal disease in patients with heritable forms of osteomalacia. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    The biochemistry of mineralizing extracellular vesicles. Part I: The role of phosphatases

    Get PDF
    In this chapter, we will review some of the information regarding the functional significance of the inorganic phosphate (Pi)/pyrophosphate (PPi) ratio for physiological mineralization of hard tissues. We will recount the structure and function of the phosphatases involved in the regulation of this ratio: Tissue-nonspecific alkaline phosphatase (TNAP); Nucleotide Pyrophosphatases/Phosphodiesterase 1 (ENPP1); Na,K-ATPase; Nucleoside triphosphate diphosphohydrolase 1 (CD39); ecto-5â€Č-nucleotidase (CD73) and orphan phosphatase 1 (PHOSPHO1); and how this knowledge has guided the development of protein therapeutics and of small molecule inhibitors to affect the Pi/PPi ratio in pathological conditions ranging from soft bones to ectopic calcification disorders

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Surface roughness of titanium disks influences the adhesion, proliferation and differentiation of osteogenic properties derived from human

    No full text
    Purpose The aim of this study was to investigate the response of osteogenic cell lineage and gingival fibroblastic cells to different surface treatments of grade IV commercially pure Titanium (cpTi) disks. Material and methods Grade IV cpTi disks with different surfaces were produced: machined (M), sandblasting (B), sandblasting and acid subtraction (NP), and hydrophilic treatment (ACQ). Surface microtopography characteristics and chemical composition were investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Adhesion and proliferation of SC-EHAD (human surgically-created early healing alveolar defects) and HGF-1 (human gingival fibroblasts) on Ti disks were investigated at 24 and 48 h, and osteogenic differentiation and mineralization were evaluated by assessing alkaline phosphatase (ALP) activity and alizarin red staining, respectively. Results No significant differences were found among the various surface treatments for all surface roughness parameters, except for skewness of the assessed profile (Rsk) favoring M (p= 0.035 ANOVA). M disks showed a slightly higher (p> 0.05; Kruskal-Wallis/Dunn) adhesion of HGF-1 (89.43 +/- 9.13%) than SC-EHAD cells (57.11 +/- 17.72%). ACQ showed a significantly higher percentage of SC-EHAD (100%) than HGF-1 (69.67 +/- 13.97%) cells adhered at 24 h. SC-EHAD cells expressed increased ALP activity in osteogenic medium at M (213%) and NP (235.04%) surfaces, but higher mineralization activity on ACQ (54.94 +/- 4.80%) at 14 days. Conclusion These findings suggest that surface treatment influences the chemical composition and the adhesion and differentiation of osteogenic cells in vitro

    Ultrasensitive Diamond Microelectrode Application in the Detection of Ca2+ Transport by AnnexinA5-Containing Nanostructured Liposomes

    No full text
    This report describes the innovative application of high sensitivity Boron-doped nanocrystalline diamond microelectrodes for tracking small changes in Ca2+ concentration due to binding to Annexin-A5 inserted into the lipid bilayer of liposomes (proteoliposomes), which could not be assessed using common Ca2+ selective electrodes. Dispensing proteoliposomes to an electrolyte containing 1 mM Ca2+ resulted in a potential jump that decreased with time, reaching the baseline level after ~300 s, suggesting that Ca2+ ions were incorporated into the vesicle compartment and were no longer detected by the microelectrode. This behavior was not observed when liposomes (vesicles without AnxA5) were dispensed in the presence of Ca2+. The ion transport appears Ca2+-selective, since dispensing proteoliposomes in the presence of Mg2+ did not result in potential drop. The experimental conditions were adjusted to ensure an excess of Ca2+, thus confirming that the potential reduction was not only due to the binding of Ca2+ to AnxA5 but to the transfer of ions to the lumen of the proteoliposomes. Ca2+ uptake stopped immediately after the addition of EDTA. Therefore, our data provide evidence of selective Ca2+ transport into the proteoliposomes and support the possible function of AnxA5 as a hydrophilic pore once incorporated into lipid membrane, mediating the mineralization initiation process occurring in matrix vesicles

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    No full text
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.13Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    No full text
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p&lt;0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p&lt;0·0001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status
    corecore