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Abstract 
In this chapter, we will review some of the information regarding the functional significance of the inorganic 
phosphate (Pi)/pyrophosphate (PPi) ratio for physiological mineralization of hard tissues. We will recount the 
structure and function of the phosphatases involved in the regulation of this ratio: Tissue-nonspecific alkaline 
phosphatase (TNAP); Nucleotide Pyrophosphatases/Phosphodiesterase 1 (ENPP1); Na,K-ATPase; Nucleoside 
triphosphate diphosphohydrolase 1 (CD39); ecto-5′-nucleotidase (CD73) and orphan phosphatase 1 
(PHOSPHO1); and how this knowledge has guided the development of protein therapeutics and of small 
molecule inhibitors to affect the Pi/PPi ratio in pathological conditions ranging from soft bones to ectopic 
calcification disorders. 
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1. Inorganic phosphate (Pi) and pyrophosphate (PPi): a physicochemical balance 
Ions are present throughout our body, circulating in the extracellular fluid. The concentration of Ca2+ is 

maintained at the narrow range of 2.2 to 2.7 mmol/L in the extracellular environment by the endocrine system 
[1]. On the other hand, the concentration of Pi varies considerably with age, being higher during childhood, but 
with values in the range of 1.12 to 1.45 mmol/L in adults [2]. In purely chemical terms, a salt will precipitate if its 
solubility is exceeded (supersaturation conditions), thus the concentration of circulating Ca2+ and Pi in the body 
fluid would be sufficient to explain apatitic mineral deposition in skeletal and dental tissues. However, despite 
the solubility product constant, log(Ksp), for hydroxyapatite being around 30 orders of magnitude smaller than 
the logarithm of the ionic product of the concentration of Ca2+ and Pi in human plasma under physiological 
conditions [3], direct precipitation of apatite or any metastable precursor does not occur in healthy soft tissues. 
Through very elaborate cellular mechanisms, our body can store ions and promote apatite mineralization only in 
bones and teeth, preventing calcification in soft tissues (except in pathological conditions). Furthermore, in 
certain regions of the body, such as the adhesion of tendons to bone, the interface between mineralized and 
non-mineralized tissue must be precisely controlled in order to maintain anatomical functionality. This fine control 
of biomineralization occurs through a cascade of spatially and temporally orchestrated events in which precursor 
ions are systemically prevented from precipitating as a solid mineral phase or are stabilized as precursor phases 
of amorphous minerals. Thus, in physiological conditions, mineralization occurs locally only in the extracellular 
matrix of skeletal and dental tissues, where osteogenic cells control the concentrations of mineralization 
inhibitors and create the ideal microenvironment for the nucleation and growth of the mineral phase [4]. 

As discussed in Chapter 2: Physiological biomineralization. Part I: the role of matrix vesicles in skeletal and 
dental calcifications, the characteristics of the extracellular matrix (collagen and non-collagenous proteins) 
influence mineral deposition. Non-collagenous macromolecules such as osteopontin (OPN) and vitronectin play 
a role in this process, either through their charged groups that act as sponges to attract precursor ions or through 
their ability to stabilize the amorphous precursor and allow its infiltration into fibrils of collagen and even act in 
the nucleation of the mineral phase. Thus, characteristics of the extracellular matrix could explain the existence 
of mineralized tissues, where charged groups create the favorable environment for overcoming the nucleation 
energy to establish a mineral phase [5–7]. However, in addition to the ability to secrete the extracellular matrix 
where the crystals will be deposited, osteogenic cells must be able to create a favorable environment to remove 
inhibitors and locally enhance the concentration of precursor ions (especially Pi). Mineralization is restricted to 
sites where cells can express a fibrillar matrix, such as type I collagen or elastin (the matrix) and enzymes 
capable of locally removing calcification inhibitors [8,9]. If the nucleation of the mineral phase is inhibited in a 
systemic way, the existence of mineralized tissues indicates cell specialization to a phenotype capable of 
creating the microenvironment necessary for the mineralization of the extracellular matrix. This concept recently 
enunciated by Marc McKee as the Stenciling Principle [10] describes that in the extracellular matrix, enzymes 
precisely control the selective removal (stenciling) of inhibitors – small molecules such as PPi and inhibitory 
proteins such as OPN - to regulate mineral crystal growth. The Stenciling Principle implies a double-negative 
"inhibiting an inhibitor" paradigm that enables and regulates the growth of small mineral foci in the extracellular 
matrix [10].  

PPi, was the first extracellular calcification inhibitor identified, described in the 1960s as a potent inhibitor of 
mineralization [11]. PPi is a phosphate ester formed by two Pi monomers joined by a P-O-P bond and is present 
in extracellular medium in concentrations of 1.5-3.0 µmol/L [12]. It acts as a mineralization inhibitor through 
complexation with Ca2+, reducing the nucleation and growth rates of calcium phosphates [13]. Thus, maintaining 
an ideal Pi/PPi ratio is widely accepted as a necessary condition for mineral formation in the extracellular matrix 
[14]. It has already been observed in vitro that different Pi/PPi ratios promote the formation of different mineral 
phases. In fact, a ratio of around 140 results in the exclusive formation of apatites, while the reduction of this 
ratio to around 24 leads to the formation of calcium pyrophosphates [15]. The Pi/PPi ratio has not been fully 
investigated under physiological conditions but considering that 1-2 mmol/L of Pi and 1-2 µmol/L of PPi can be 
found in the extracellular medium, the resulting physiological Pi/PPi ratio is around 1000. As described by 
Garimella et al. [16], a small variation in PPi concentrations is enough to induce inhibition of apatite formation. In 
addition to PPi being responsible for fine-tuning mineralization, phosphate is also stored in the form of 
polyphosphates, which is another way of controlling the concentration of free Pi necessary for the nucleation of 
the mineral phase [17]. 

 OPN, a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of acidic, 
phosphorylated, calcium-binding, matricellular proteins, is another potent inhibitor of mineralization known to 
regulate dental, skeletal, and pathologic mineralization [18–20]. OPN is physiologically degraded by the zinc-
metallopeptidase encoding gene PHEX (phosphate-regulating gene with homologies to endopeptidases on the 



X chromosome) and mutations in PHEX lead to accumulation of OPN and its proteolytic fragments that cause 
X-linked hypophosphatemic rickets [21]. Yet another potent systemic inhibitor of mineralization is fetuin-A, a 
circulating protein with a high affinity for Ca2+, which prevents the growth of mineral nuclei in the blood by 
mobilizing Ca2+ and Pi in a complex with colloidal dimensions that can reach 150 nm [22,23]. A single molecule 
of fetuin-A sequesters up to 90-120 Ca2+ and 54-72 Pi ions [23]. In addition, fetuin-A is abundant in bone tissue, 
corresponding to about 25 wt.% of non-collagenous proteins [23]. The ossification process is accompanied by 
an intense vascularization of the nascent tissue [24], and the observation of mineral particles from the 
bloodstream in the bone matrix indicates that calciproteins can act as a source of precursor ions for calcification 
[25–27]. As an example, the human blood protein vitronectin is a major component of the abnormal deposits 
associated with age-related macular degeneration, Alzheimer’s disease, and many other age-related disorders 
[28]. Shin et al. [6] recently demonstrated that vitronectin is capable of binding both soluble Ca2+ and crystalline 
hydroxyapatite with high affinity and chemical specificity. The authors proposed that vitronectin may act as a 
buffer for ionic Ca2+ in blood, a coordinator of calcium-phosphate deposition and mineralization on the surface 
of lipid droplets, and a regulator of hydroxyapatite crystal growth.  

Osteogenic cells control mineral phase deposition through different mechanisms, ranging from the 
intracellular formation of mineral precursors [29–31] to the release of mineralizing extracellular vesicles [32]. 
Matrix vesicles are a special type of extracellular vesicles identified as responsible for triggering the formation of 
the mineral phase during bone mineralization and possessing high affinity for collagen fibrils. Extracellular 
vesicles are structures released by almost all cell types and ubiquitously present in biological fluids and classified 
according to their cellular origin into two classes: exosomes and microvesicles [33]. Exosomes have intracellular 
origin in the endosomal system, secreted into the extracellular environment after the fusion of multivesicular 
bodies with the cell membrane cell. Microvesicles are formed from directly budding of the cell membrane. 
Extracellular vesicles have aroused great interest due to their role in transporting and directing different cargoes 
(e.g., nucleic acids, lipids, and proteins) for delivery to cells, generating important responses for both 
physiological processes and pathological conditions [33]. The origin of the name “matrix vesicles” is related to 
their presence in the extracellular matrix. They are a special class of extracellular microvesicles found interacting 
specifically with the collagenous matrix and uniquely endowed with the specialized function of inducing 
mineralization [32]. Matrix vesicles were discovered in the 1960s by H. Clarke Anderson [34] and Ermanno 
Bonucci [35] who visualized vesicular structures containing mineral in the extracellular matrix of mineralizing 
cells using transmission electron microscopy. Matrix vesicles provide an appropriate microenvironment for the 
initiation of mineralization. All their lipidic and proteic components play important roles in this process, either by 
catalyzing reactions or creating specific interactions that result in the optimization of mineral phase formation 
[32,36]. In addition, they are identified as the only type of extracellular vesicle capable of binding to collagen [37]. 
Despite more than 50 years of study on matrix vesicles, the mechanism by which they are secreted, and how 
exactly they control mineralization remains elusive. In addition, there are still great challenges to fully understand 
the process: identifying matrix vesicles in vivo, differentiating them from other extracellular vesicles, and 
accurately characterizing the mineral formation mediated by these structures in vivo and ex vivo. Tracking 
mineral formation has been especially challenging, mainly due to artifacts in sample preparation for electron 
microscopy attributed to dissolution/recrystallization mechanisms or removal of metastable precursors. 

Matrix vesicles can be isolated from biological tissues by ultracentrifugation (see Chapter 1X: Working with 
Mineralizing Extracellular Vesicles: Purification Techniques) after collagenase digestion, which allows obtaining 
a fraction rich in these vesicles, at the expense of other extracellular vesicles [38]. Collagenase digestion is the 
key point in distinguishing matrix vesicles from other extracellular vesicle populations. Using this procedure, a 
population of matrix vesicles is isolated and differentiated from other cellular components by their biochemical 
markers and properties: high tissue-nonspecific alkaline phosphatase (TNAP) activity; a characteristic proteic 
and lipidic profile and their ability to accumulate Ca2+ and Pi in vitro [32,36]. 

As can be seen in Figure 1, matrix vesicles have the ability to rapidly mineralize (5 hours), when dispersed in 
synthetic cartilage lymph in the presence of Pi and Ca2+. Although phosphatases are not functional under these 
experimental conditions, Ca2+ and Pi transporters can act adjusting the ionic concentrations inside the matrix 
vesicles and generating the nucleational core to subsequently propagate mineral formation. In the presence of 
ATP, phosphatases are engaged in producing Pi (Figure 1). Since it is an enzymatic Pi-generation progress, 
mineralization initiation takes longer and begins after 10 hours. After 20 hours of incubation with ATP the 
turbidimetry reaches the same values found by incubation with free Pi (Figure 1). This simple experiment 
evidences the role of the biochemical machinery in initiating mineralization [39]. Therefore, matrix vesicles create 
a microenvironment, inside the vesicles, that permit the initiation of mineralization (nucleation process), and in a 
second step the propagation of the mineral onto the collagenous matrix [32,40]. Evidence described in the 



literature indicate that matrix vesicles act as nanoreactors during bone mineralization due to two main 
characteristics: [i] their elaborate enzymatic machinery that works in coordination to control the Pi/PPi ratio and 
[ii] mineral phase formation within matrix vesicles that is specifically controlled by their lipidic and proteic 
composition.  

 

 
Figure 1. Mineralization curves obtained for matrix vesicles dispersed in synthetic cartilage lymph.  
Changes in the turbidimetry at 340 nm as a function of time for matrix vesicles dispersed in synthetic cartilage 

lymph in the presence of 2.0 mM CaCl2 plus () 3.41 mM NaH2PO4 or () 2.0 mM ATP, as source of phosphate. 
As described by Buchet et al. [40], matrix vesicles were extracted from femurs epiphyses/growth plates embryo 
chicken in synthetic cartilage lymph constituted by: 1.83 mM NaHCO3, 12.7 mM KCl, 0.57 mM MgCl2, 5.55 mM 
D-glucose, 63.5 mM sucrose, 16.5 mM 2-Amino-2-hydroxymethyl-propane-1,3-diol)/HCl, 100 mM NaCl, 0.7 mM 
Na2SO4, in deionized water at pH 7.6 [41]. The amount of vesicles added to the samples was normalized to the 
amount of protein. 
 
2. The molecules regulating the Pi/PPi ratio 

Proteomic analysis of matrix vesicles (see Chapter 10: Working with mineralizing extracellular vesicles. Part 
II: proteomic profiling) revealed an important number of enzymes and transporters that work in synergy to enable 
the nucleation and propagation of the mineral, tightly controlling the concentration of Pi and PPi outside and 
inside of the vesicles. 

As schematically represented in the Figure 2, orphan phosphatase 1 (PHOSPHO1) produces Pi inside matrix 
vesicles through the hydrolysis of phosphocholine and phosphoethanolamine [42], derived from various sources 
including sphingomyelin by the action of sphingomyelin phosphodiesterase 3 (SMPD3) that acts in the inner 
leaflet of the vesicle´s membrane [43]. In addition, phosphate transporter 1 (PiT-1), and possibly other not yet 
identified transporter(s), may also be responsible for increasing the concentration of Pi ions that is necessary for 
nucleation inside the matrix vesicles, forming hydroxyapatite [44]. In the membrane of matrix vesicles, TNAP 
and nucleotide pyrophosphatases/phosphodiesterase 1 (ENPP1) control the Pi/PPi ratio by hydrolysis of 
phosphomonoesters, ATP and also PPi [45]. ATP-binding cassette sub-family C member 6 (ABCC6) is one of 
the transporters that may export ATP, but possibly also AMP and PPi, to the extracellular milieu [46]. In addition, 
Na,K-ATPase may contribute to intravesicular Pi formation acting to generate a Na+ gradient that could be used 
to co-transport Pi by PiT-1 and also to form Pi by ATP hydrolysis [39]. OPN binds to hydroxyapatite mineral as 
soon as it is exposed on the surface of matrix vesicles [47]. The exact mechanism by which matrix vesicles are 
generated and how they help to propagate hydroxyapatite mineral onto the collagenous matrix remains unclear 
and these are areas of active investigation in our laboratories. In the next sections, we will discuss the matrix 
vesicles biochemical machinery with emphasis on these phosphatases. 
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Figure 2. Schematic representation of Pi/PPi homeostasis during matrix vesicle-mediated mineralization. 
Matrix vesicles provide an environment that allows the initial nucleation of apatite inside the vesicles. Pi is 
generated and the concentration of PPi is controlled by the orchestrated action of phosphatases and phosphate 
transporters. Abbreviations in the figure: orphan phosphatase 1 (PHOSPHO1); phosphocholine (PC); 
sphingomyelin (SM); sphingomyelin phosphodiesterase 3 (SMPD3); phosphate transporter 1 (PiT-1); apatitic 
mineral/hydroxyapatite (HA); Tissue-nonspecific alkaline phosphatase (TNAP); Nucleotide 
Pyrophosphatases/Phosphodiesterase 1 (ENPP1); Nucleoside triphosphate diphosphohydrolase 1 (CD39); 
ATP-binding cassette sub-family C member 6 (ABCC6), ecto-5′-nucleotidase (CD73); osteopontin (OPN);  
adenosine triphosphate (ATP); adenosine diphosphate (ADP) and Na,K-ATPase (NKA); matrix vesicles (MV). 
 
3. Tissue-nonspecific alkaline phosphatase (TNAP) 

TNAP is an enzyme that has phosphomonohydrolytic activity. It produces Pi from the hydrolysis of many 
phosphorylated substrates: ATP, adenosine diphosphate (ADP), glucose-1-phosphate, glucose-6-phosphate, 
glyceraldehyde-phosphate, among others [48]. More efficiently and selectively, it converts PPi into two molecules 
of Pi, or one molecule of ATP into up to three molecules of Pi and adenosine as the final reaction product. The 
existence of an enzyme with phosphomonohydrolytic activity capable of producing Pi locally during ossification 
was proposed in the 1920s [49]. TNAP belongs to a family of isozymes, widely expressed in the body. In humans, 
alkaline phosphatases are encoded by four genes traditionally named referring to the tissues where they are 
predominantly expressed [50]. TNAP is encoded by the ALPL gene and expressed at highest levels in the liver, 
bones, and kidney, the reason why it is called tissue-nonspecific. The other three isozymes are tissue-specific: 
placental (PLAP, ALPP gene), germ cell (GCAP, ALPPL2 gene) and intestinal (IAP, ALPI gene) alkaline 
phosphatase. Regardless of their origin, alkaline phosphatases are homodimeric enzymes consisting of two 
identical subunits of 484 amino acids with a molecular weight of approximately 60 kDa, containing three active 
site metal ions (two Zn2+ and one Mg2+), necessary for catalytic activity [50]. A non-catalytic site occupied by 
Ca2+ was discovered after resolving the three-dimensional structure of PLAP [51,52] providing structural 
confirmation of previous studies that indicated that, in cartilage, alkaline phosphatase is a Ca2+-binding 
glycoprotein [53]. Since its identification, TNAP has been confirmed as one of the main enzymes responsible for 
calcification of the bone matrix [14]. Despite the presence of alkaline phosphatases in several tissues in the 
body, mineralization is physiologically restricted to the skeleton and teeth since they require extracellular 
matrices of specific composition (collagens) to serve as a scaffold for mineral deposition. Moreover, the co-
expression of TNAP and collagen fibers has been described as necessary and sufficient to calcify any 



extracellular matrix [8]. Thus, not surprisingly, many pathological conditions that result in soft tissue calcification 
involve the upregulation of TNAP [54]. 

TNAP is found at the outer leaflet of both the plasma membrane of osteogenic cells and the membrane of 
matrix vesicles. It is a marker of a mineralizing phenotype, given the role of this enzyme in PPi removal and local 
Pi generation during mineralization. TNAP-deficient mice produce matrix vesicles that lack TNAP [45] and in vivo 
analyzes of bone matrix in these animals demonstrate deficient propagation of bone mineral onto the 
extracellular matrix due to accumulation of extracellular PPi  [37]. In addition, TNAP is also involved in the removal 
of phosphate groups from some proteins such as OPN, being able to modify its phosphorylation level and, 
consequently, affecting its inhibitory properties during calcification [55-57]. Furthermore, the extracellular PPi 
concentrations regulate the expression of OPN [58] and in turn OPN regulates the expression of genes that 
control the production and degradation of PPi in a counter-regulatory loop [59]. The ability of TNAP to locally 
control the PPi concentration and the phosphorylation of non-collagenous proteins points to the fundamental role 
of this enzyme in the complex mechanisms of mineralization [4]. 

The importance of TNAP in controlling skeletal and dental mineralization is further evidenced by the 
pathophysiology of hypophosphatasia, a hereditary bone disease caused by hypomorphic mutation in the ALPL 
gene [60], that will be discussed in more detail later on in this chapter. TNAP deficiency in hypophosphatasia 
leads to soft bones, in the form of rickets in children and osteomalacia in adults, due to the accumulation of 
extracellular PPi that suppresses the propagation of apatitic mineral onto the collagenous matrix [60]. Skeletal 
as well as dental hypomineralization characterizes hypophosphatasia, with disease severity varying from life-
threatening perinatal or infantile forms to milder forms that manifest in adulthood or only affect the dentition [61].  

In contrast, upregulation of TNAP in soft tissues leads to sinking PPi levels and wide-spread ectopic 
calcification. Overexpressing TNAP in the medial layer of arteries in mice leads to medial artery calcification [62] 
(see Chapter 3: Pathological biomineralization. Part I: Mineralizing extracellular vesicles in cardiovascular 

diseases). Elevated expression of TNAP causes media calcification in patients with diabetes, obesity, chronic 
kidney disease-mineral bone disorder and simply during aging. Overexpression of TNAP in the intimal layer of 
arteries is also a key event in the pathophysiology of atherosclerosis [63,64] where rupture of a plaque is 
considered the primary reason for cardiovascular death, accounting for most myocardial infarction cases and 
about 20% of ischemic strokes [65]. Recent data suggest that microcalcifications, characterized by size smaller 
than 10 µm, negatively impact plaque stability [66,67]. The potential beneficial effects of TNAP inhibition have 
been investigated in two models of atherosclerosis, one with the Ldlr-/- atherogenic mutation superimposed onto 
the Tie2-Cre TNAP overexpressor mice [64] and in the ApoE-/- atherogenic mice, both fed a high-fat diet. In both 
models, calcification was the initiating event in the pathophysiology of atheroma formation and administration of 
a TNAP inhibitor by food admixture prevented vascular calcification and reduced the development of 
microcalcifications [68].  

These data clearly illustrate the physiological role of TNAP in controlling the extracellular Pi/PPi ratio 
conducive for proper skeletal and dental mineralization and the consequences of a pathophysiological 
upregulation of TNAP that results in sinking PPi concentrations and calcification of soft tissues.  

 
4. Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) and other ENPPs 

 ENPP1 belongs to a class of enzymes (ENPPs) expressed in different anatomical sites such as bone, 
cartilage, and adipose tissue, having specific functions in each tissue/cell type. Among the main enzymes of this 
large family, ENPP1 (also known as NPP1 or PC-1) is an integral membrane protein [69,70], with a molecular 
weight of approximately 125 kDa and a total of 906 amino acid residues. This enzyme stands out for its ability to 
hydrolyze different types of polyphosphorylated nucleotides and phosphodiesters, ATP in particular,  to generate 
PPi  [69,71,72]. Thus, ENPP1 (the main generator of PPi) together with TNAP (that controls the Pi/PPi ratio in the 
extracellular matrix), have crucial functions in the production and regulation of the Pi /PPi ratio in the extracellular 
matrix, influencing the generation of the mineral phase [73]. Failures in the expression of ENPP1 result in 
abnormalities related to bone hypermineralization and pathological soft tissue mineralization, including arterial 
calcification [44]. However, elevated expression of ENPP1 results in calcification of cartilaginous tissues, due to 
the formation of calcium pyrophosphate dihydrate, which occurs mainly during the aging process of the knee 
meniscus cartilage [74,75]. Abnormal precipitation of calcium pyrophosphate dihydrate has also been reported 
associated with TNAP deficiency [44]. 

ENPP1 deficiency in mice leads to ossification of the posterior longitudinal ligament of the spine, peripheral 
joint hyperostosis and calcification of articular cartilage as well as generalized arterial calcification of infancy in 
humans but can also manifest phenotypic changes characteristic of pseudoxanthoma elasticum, that is caused 
by a deficiency in the ABCC6 transporter. Enpp1-/- mice have almost undetectable levels of plasma PPi leading 



to inappropriate deposition of apatitic mineral in soft tissues [73,74]. Surprisingly, Enpp1-/- mice also display 
reduced trabecular and cortical bone in the long bones and decreased bone strength [76] corresponding to 
autosomal recessive hypophosphatemic rickets type 2 (ARHR2) in humans [77] and in fact, those children that 
survive generalized arterial calcification of infancy (experiencing the characteristic calcification of their arteries, 
heart, kidneys, and joints) will develop ARHR2 (displaying rickets, bone and muscle pain, bowing of the legs, 
short stature, and an increased risk of fractures). Pseudoxanthoma elasticum is a genetic disorder caused by 
mutations in the human ABCC6 gene that is characterized by Ca2+ deposition outside of the skeletal system, 
specifically in the blood vessels, skin, and eyes, but can also manifest skeletal mineralization abnormalities [78]. 

The ENPP family members share a homologous catalytic core, phosphodiesterase domain, and previously 
they were named and grouped based on the nature of their substrates, extracellular location, and chronological 
discovery. The family members are divided into two subgroups, ENPP1-3 and ENPP4-7, reflecting their structure 
and domain constitution [79]. ENPP1-3 have multi-domain proteins, with two tandem N-terminal somatomedin 
B-like domains, a phosphodiesterase domain, a linker region (“lasso loop”), and a C-terminal nuclease-like 
domain [79]. The ENPP1 and 3 are considered single pass type II membrane proteins. However, Autotaxin (also 
known as ENPP2) is a secreted protein, processed by removal of its signal peptide [80,81]. The other four ENPP 
members (4,5,6,7), just have the signature phosphodiesterase domain. On the other hand, ENPP4, ENPP5, and 
ENPP7 are single-pass type I membrane proteins, while ENPP6 is glycosylphosphatidylinositol-anchored to the 
plasma membrane [82]. Therefore, all the ENPP members are implicated in purinergic signaling and can 
hydrolyze extracellular nucleotides. They have biological importance due to their broad substrate repertoire and 
structural diversity, as revealed by animal and human data [79]. 

ENPP1 is a member of the ENPP family of proteins with two somatomedin B-like domains, a catalytic domain, 
and nuclease-like domain. The catalytic and nuclease-like domains are related to bone mineralization while, the 
somatomedin B-like domains are important for insulin signaling. ENPP1 cleaves a variety of substrates, including 
phosphodiester and pyrophosphate bonds of nucleotides and nucleotide sugars [83]. 

It has been established that ENPP1 is a regulator of soft tissue and skeletal mineralization and is involved in 
bone remodeling [76,84]. Studies have reported that Enpp1-/- mice are protected against obesity and diabetes 
through alterations to their osteocalcin carboxylation status [85]. In turn, bone is a key endocrine regulator of 
metabolism and energy balance mediated by an osteocalcin pathway [86–88]. On the cell surface, ENPP1 
generates PPi by hydrolyzing ATP, which inhibits apatitic crystal formation and deposition, inhibiting the 
mineralization by binding to newly formed crystals, therefore, preventing the growth of these crystals [83,89]. 
Also, ENPP1 can act as a potent ATPase in the matrix vesicles microenvironment in absence of TNAP 
[45,60,72,90]. 

 
5. Nucleoside triphosphate diphosphohydrolase 1 (CD39) and ecto-5′-nucleotidase (CD73) 

Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1 or CD39) belongs to one of the largest 
family of ectonucleotidases present in the human body. The fundamental characteristic that distinguishes this 
family of transmembrane enzymes is the use of Ca2+ and Mg2+ ions as cofactors of their catalytic sites. Within 
this family there are eight different types of E-NTPDase, among which E-NTPDase1-3 and 8 stand out as the 
main enzymes capable of hydrolyzing ATP to generate PPi and AMP [91]. Therefore, they share very similar 
protein structures, as well as similar tertiary structure with actin/HSP70/sugar kinase families. The E-NTPDase1 
encoded by ENTPD1 gene on the 10q24.1 chromosome, are constituted by 510 amino acids residues, and 
contains a C-terminal and an N-terminal α-helical transmembrane domain [92]. The formation of its catalytic site 
comes from two oligomeric complexations, resulting in a strong interaction with substrates between these 
complexed domains [91]. 

Moreover, the presence of E-NTPDase1 stands out in polymorphonuclear neutrophils, and in HL-60 cells, 
and hydrolyzing ATP for the production of antibodies [91,93]. E-NTPDase1 corresponds to antigen CD39 in 
lymphoid cells, especially when associated with the quiescent vascular endothelium [91]. Due to its presence in 
cells of the immune system, CD39 is also found in the microenvironment of tumors, due to its possible correlation 
with the production of adenosine during the process of tumor proliferation by various immunosuppression 
mechanisms [92]. The formation of adenosine, under non-pathological conditions, is intertwined with the function 
of another family of nucleotides, the Ecto-5'-Nucleotidase (CD73 or ecto-5'-NT) and TNAP. 

Ecto-5'-NT is a glycoprotein bound directly to the cell membrane through a glycosylphosphatidylinositol 
anchor [94]. Purified Ecto-5'-NT is a 70 kDa protein, with 574 amino acid residues, forming three structural 
domains: i) an N-terminal domain with binding site for metal ions (metal binding site); ii) a C-terminal domain, 
basically consisting of the catalytic activity of the enzyme, and a hydrophobic interaction region that results in 
the stabilization of its homodimerization; and iii) the α-helix domain bridge [92]. Its catalytic site has an 



extracellular orientation and is activated with the coordination of two Zn2+ ions, hydrolyzing AMP molecules to 
produce adenosine and Pi [92,95]. Therefore, its adenosine-forming property makes Ecto-5'-NT a rate-limiting 
second step in the metabolism of purine-based nucleotides. 

Recently, both ENPD1 and Ecto-5'-NT were found expressed in hypertrophic chondrocytes and differentiated 
osteoblasts of 7-days-old wild-type mice, indicating that they likely act together with TNAP in maintaining the 
ATP/adenosine and the Pi/PPi ratios during bone biomineralization [95]. However, while TNAP is transferred 
from the cell membrane to the matrix vesicles’ membranes, neither CD39 nor CD73 were found on the 
membranes of matrix vesicles, but remained at the cell membrane [95], so while both enzymes affect ATP 
metabolism and generate Pi, they are not matrix vesicles’ enzymes, per se.  

 
6. PHOSPHO1 

PHOSPHO1, discovered in the Farquharson laboratory, is a phosphomonohydrolase found in the cytosol of 
mineralizing cells and in the lumen of their blebbed matrix vesicles [42,96]. The PHOSPHO1 gene of humans 
and mice has three exons of which exon 3 contains the conserved motif of the haloacid dehalogenase 
superfamily [96,97]. A PHOSPHO1-3a transcript has been identified in human osteoblasts. The 127 bp sequence 
in intron 2 of PHOSPHO1-3a forms the starting point of an 879 bp open reading frame with a predicted protein, 
which encodes 292 amino acids resulting in a protein of ~ 29 kDa [42,98]. 

The crystal structure of the PHOSPHO1 protein has not been reported to-date but a three-dimensional model 
of human PHOSPHO1 protein shows two domains, a catalysis-related α/β structure and a Rossmann-like fold 
with a four-spiral bundle domain [99]. The Rossmann-like fold had six parallel β-sheets and six surrounding α-
helices. The predicted human PHOSPHO1 protein contained three conserved peptide motifs. The motif I 
comprised threonine and valine residues and two aspartic acids (Asp43 and Asp123) residues. Mutation of 
Asp123 reduced the catalytic activity of PHOSPHO1 with phosphatidylcholine by 20 and 60 times, respectively. 
Mutation of Asp43 reduced the catalytic activity of PHOSPHO1 with phosphatidylethanolamine and abolished 
the reactivity of PHOSPHO1 with phosphatidylcholine. These results indicated that Asp123 and Asp43 of motif 
I might be the active enzymatic sites of PHOSPHO1 protein in catalyzing different substrates [99]. 

Regarding its role in bone mineralization, it has been reported that PHOSPHO1 acts in concert with TNAP to 
accumulate Pi for initiation of mineralization. In fact, animals doubly deficient in TNAP and PHOSPHO1 exhibit 
complete ablation of skeletal mineralization and embryonic lethality [100]. Despite concrete evidence for the role 
of PHOSPHO1 in ossification, the biochemical pathway by which this enzyme aids in the accumulation of Pi 
within matrix vesicles remains unclear. PHOSPHO1 generates Pi through the hydrolysis of two substrates: 
phosphocholine and phosphoethanolamine. Different pathways have been proposed for the local production of 
these substrates, either through the action of phospholipase A2 (PLA2), ectonucleotide 
pyrophosphatase/phosphodiesterase 6 (ENPP6) or SMPD3 as recently reviewed [101]. Stewart et al.[99] 
proposed a mechanism through which phosphatidylethanolamine and phosphatidylcholine may be generated 
intravesicularly by the enzymatic action of PHOSPHO1 on the vesicle’s phospholipid membrane, as mediated 
by a PLA2 and ENPP6 [101,102]. The PLA2 family of enzymes catalyze cleavage of the acyl group at the sn-2 
acyl position of glycerophospholipids resulting in a free fatty acid and lysophospholipid [41,48,103–105]. These 
enzymes may therefore act to breakdown phosphatidylcholine and phosphatidylethanolamine present in the 
matrix vesicles’ membrane, forming lysophosphatidylcholine and lysophosphatidylethanolamine, respectively, 
along with arachidonic acid [102]. Indeed, the matrix vesicle membrane has been shown to be enriched in 
phospholipids containing phosphatidylcholine and phosphatidylethanolamine which progressively decline during 
mineralization [106–108], while phosphatidylcholine was also identified as an abundant metabolite in developing 
mouse long bones by matrix-assisted laser desorption/ionization-imaging mass spectrometry [109]. Interestingly, 
a recent spatial lipidomic study reported that lysophosphatidylcholine and lysophosphatidylethanolamine were 
upregulated in the growth plate of PHOSPHO1 null mice supporting a role for these lipids in the formation of 
PHOSPHO1 substrates [110]. There are upwards of 30 identified mammalian PLA2 enzymes which exhibit a 
wide range of localizations (including secreted, cytosolic and lysosomal groups) and have been shown to be 
involved with many physiological and pathological processes [111–113]. Mebarek et al. [114] comprehensively 
reviewed the evidence for the role of phospholipases in mineralization, noting several experimental studies 
confirming expression of both secreted and cytosolic PLA2s in chondrocytes and osteoblasts where they play 
several roles [114]. While some specific PLA2s have been shown to influence bone formation [115] it is currently 
unclear whether they act directly in the mineralization process. A second enzymatic processing phase is 
hypothesized to convert generated lysophospholipid to phosphatidylcholine for direct hydrolysis by PHOSPHO1, 
mediated by ENPP6 [116]. ENPP6 has been shown to possess lysophospholipase C activity, catalyzing the 
conversion of lysophosphocholine with a monoacylglycerol by-product [69,117,118]. Expression of ENPP6 has 



been demonstrated in bone tissue lysate and was immunolocalized to hypertrophic chondrocytes and forming 
bone surfaces[116]. Specific localization of ENPP6 to matrix vesicles has yet to be established, however. 
PHOSPHO1-deficient mice presented, in addition to compromised ossification, a reduced number of matrix 
vesicles, indicating that this enzyme may also be involved in matrix vesicle biogenesis[44]. 

 
7. Can Na,K-ATPase act as a phosphatase? 

Finally, Na,K-ATPase is also found in the matrix vesicles’ membranes, and can promote mineralization by 
increasing the local concentration of Pi and consequently changing the Pi/PPi ratios. Na,K-ATPase is an active 
cationic transporter found in the cell membrane of all mammals, acting to transport three Na+ out and two K+ into 
cells for each hydrolyzed ATP molecule [119]. The functional structure of the enzyme is a heterodimer formed 
by two major α and β subunits. The α subunit (110 kDa) has ten transmembrane segments and three cytoplasmic 
domains, while the β subunit (55 kDa) has only one transmembrane segment and a highly glycosylated 
extracellular portion [120,121]. There are 2 isoforms for each of the α and β subunits that can associate with 
each other in dimers of distinct enzymatic and inhibition properties. The presence of α1, α2, β1 and β2 isoforms 
were identified in chondrocytes isolated from bovine cartilaginous joint [122] and in matrix vesicles isolated from 
hypertrophic chondrocytes from femurs of chicken embryos [123,124]. The fact that in the membranes of matrix 
vesicles there may be a dimeric form of the Na,K-ATPase combined with the fact that osteoblasts are able to 
mineralize from ATP hydrolysis, may show an important role of this enzyme in biomineralization [125]. Ongoing 
in vitro experiments in the Ciancaglini´s laboratory suggest that all ATP inside matrix vesicles could be 
hydrolyzed by Na,K-ATPase contributing to the Pi concentration necessary for apatite formation [36]. In this way, 
the Na,K-ATPase  adds Pi to the pool of ions produced by PHOSPHO1. 

 
8. Phosphate transporters 

Phosphate transporters PiT-1 and PiT-2 also called Na+/Pi type III cotransporters have been proposed as 
proteins capable of mediating the loading of extracellular Pi into the matrix vesicles [44]. PiT-1 was found in 
hypertrophic chondrocytes during endochondral ossification in mice [126], evidencing its important role in 
regulating Pi concentrations in bones and cartilage. In addition, Pi has been shown to modulate the differentiation 
of chondrocytes and osteoblasts [127]. Sugita et al. [128] suggested that ATP synthesis mediated by the 
transport of Pi into cells via PiT-1 is critical for the regulation of apoptosis and mineralization of chondrocytes. 
Lau et al. [129] demonstrated that Na+/Pi co-transport activity through PiT-1 is associated with osteoblast 
differentiation and that increased extracellular Pi concentration affects chondrocyte differentiation. Suzuki et al. 
[130] also investigated the effects of transgenic PiT-1 overexpression on the Ca2+/Pi ratio and bone metabolism. 
PiT-1 transgenic mice exhibited abnormal mineral metabolism and reduced TNAP activity in osteoblasts, 
although bone matrix mineralization and skeletal development were normal [130]. Adult PiT-1 transgenic mice 
exhibited hyperphosphatemia, associated with reduced bone mass [130]. In this in vitro study, overexpression 
of PiT-1 in osteoblasts led to a marked increase in Pi transport and downregulation of TNAP expression [130].  

 
9. Genetic diseases caused by altered Pi/PPi ratio 

 Hypophosphatasia is an inborn error-of-metabolism caused by loss-of-function mutations in the ALPL gene, 
which encodes TNAP [131–134]. To date, 416 mutations spread across the ALPL gene have been documented 
(https://alplmutationdatabase.jku.at/) but their genotype/phenotype correlations are not well understood 
[135,136]. Studies in mice have demonstrated that mineralizing skeletal and dental cells, including osteoblasts, 
chondrocytes, ameloblasts, odontoblasts, and cementoblasts, express TNAP and thus would be affected in 
hypophosphatasia [137,138]. Hypophosphatasia patients suffer from distinctive rickets and/or osteomalacia with 
a broad range of severity, as well as dental defects. There are seven major forms the disease: life-threatening 
perinatal and infantile (OMIM#241500), benign perinatal, mild and severe childhood (OMIM#241510), adult 
(OMIM#136300), and odonto-hypophosphatasia (OMIM#146300) [133,134]. Patients with perinatal 
hypophosphatasia, the gravest form of the disease, often die in utero or soon after birth because of severe 
skeletal hypomineralization, respiratory failure due to thoracic cage dysplasia and hypoplastic lungs, and 
elevated intracranial pressure due to craniosynostosis [139–143]. Dentoalveolar phenotypes, including 
premature exfoliation of primary teeth, periodontal disease, and enamel alternations, are commonly observed in 
patients with all forms of hypophosphatasia [144–146]. The inheritance pattern of perinatal and infantile 
hypophosphatasia is often autosomal recessive, with most patients being compound heterozygotes for 
pathogenic ALPL mutations that result in almost null TNAP activity, but some are homozygous for recessive 
alleles and most adult and odonto hypophosphatasia patients harbor a single dominant-negative ALPL allele 
[147,148].  

https://alplmutationdatabase.jku.at/


Phospho1-/- mice exhibit growth plate and skeletal abnormalities as well as thoracic scoliosis that becomes 
apparent shortly after birth [100]. The long bones in the Phospho1-/- mice show a distinctive patchy osteomalacia 
with frequent bowing and displaying spontaneous fractures, they contain less mineral, with smaller mineral 
crystals [149]. Three-point bending studies showed that the Phospho1-/- fractured bones had a more elastic 
characteristic than the control bones [150,151]. Biochemically, the lack of PHOSPHO1 leads to downregulation 
of Alpl gene expression, resulting in reduced levels of TNAP in matrix vesicles, chondrocytes/osteoblasts and 
plasma and an increase in plasma PPi and OPN concentrations [152]. In addition, deficiency in PHOSPHO1 
leads to a marked decrease in the production of matrix vesicles by chondro-osteogenic cells, and those matrix 
vesicles that are still produced are smaller in size and volume and largely devoid of the nucleational core 
characteristically observed in mineralizing wild-type matrix vesicles [44,153]. Consequently, both matrix vesicles-
mediated initiation and propagation of mineralization onto the extracellular matrix are compromised in the 
PHOSPHO1 deficiency, phenocopying a form of pseudo-hypophosphatasia [154]. 

Conversely, several genetic disorders that feature ectopic calcification are associated with dysregulated 
extracellular PPi homeostasis [155]. They include pseudoxanthoma elasticum (PXE), generalized arterial 
calcification of infancy (GACI), ankylosis, and arterial calcification due to deficiency of CD73 (ACDC), all 
transmitted via autosomal recessive modes. PXE (OMIM 264800) is characterized by late-onset yet progressive 
accumulation of calcium mineral at ectopic sites, including the skin, eyes, and cardiovascular system [156]. The 
classical forms of PXE are caused by loss-of-function mutations in the ABCC6 gene, encoding a transmembrane 
efflux transporter ABCC6 protein expressed primarily in the liver. GACI is an extremely severe, early-onset 
vascular calcification disease often diagnosed by prenatal ultrasound revealing calcium deposits in the fetal heart 
and arteries [78]. GACI is classified into two types, GACI type 1 (OMIM 208000) and GACI type 2 (OMIM 614473) 
which are associated with inactivating mutations in the ENPP1 and ABCC6 genes, respectively. Regardless of 
the two types, most patients with GACI die before six months of age. In contrast to GACI, ankylosis and ACDC 
(OMIM 211800) are adult-onset calcification disorders of elderly individuals. Patients with ankylosis develop 
calcification of tissues and poorly perfused bodily fluids, such as cartilage, intervertebral disc, and synovial fluid 
of joints [157]. Patients with ACDC (also known as CALJA develop arterial calcification in the lower extremities 
and calcification in joint capsules of the hands and feet causing severe pain [158]. Ankylosis and ACDC are 
caused by biallelic inactivating mutations in the ANKH and NT5E genes, encoding ANKH (ANK in mice) and 
CD73 proteins, respectively.  

These rare diseases clearly demonstrate the fundamental role of maintaining a properly regulate Pi/PPi ratio 
to ensure physiological mineralization in skeletal and dental tissues, while preventing unwanted ectopic 
calcification of soft tissues. Next, we will briefly summarize ongoing therapeutic strategies being explored to 
normalize the Pi/PPi ratio for the treatment of these rare diseases. 

 
10. Therapeutic approaches to normalizing the Pi/PPi ratio 

Asfotase alfa is a recombinant fusion protein comprising the human TNAP ectodomain, a human IgG1 Fc 
fragment to enable one-step purification and enhance its pharmacokinetic properties, and a terminal deca-
aspartate (D10) motif to confer mineral-targeting properties to this biologic. Treatment of the Alpl-/- mouse model 
of infantile hypophosphatasia with daily subcutaneous injections of asfotase alfa normalized plasma PPi 
concentrations, preserved life, and prevented the skeletal defects, the epileptic seizures and the dental defects 
[159–161]. In humans, subcutaneous injections of asfotase alfa, up to seven times a week in children or adults 
with hypophosphatasia have demonstrated substantial and sustained efficacy with a good safety profile 
[139,142,143,162–165]. Asfotase alfa was approved world-wide for pediatric-onset hypophosphatasia in 2015 
under the name Strensiq (Alexion/AstraZeneca). However, patient burden related to almost daily injections to 
maintain the efficacy of asfotase alfa and the associated medical cost have prompted preclinical studies of 
alternative strategies for treating HPP [166]. 

Gene therapy is a powerful approach for the treatment of genetic diseases. Recent studies have shown that 
a single administration of either a lentiviral vector or adeno-associated viral vectors expressing TNAP-D10 caused 
continued expression of TNAP and the improvement in bone and dentoalveolar phenotype in a severe infantile 
hypophosphatasia mouse model [60,61,73,74,76–78]. This AAV8-TNAP-D10 viral-mediated enzyme 
replacement was also efficacious in halting the progression of disease in the AlplPrx1/Prx1 model of late-onset 
hypophosphatasia and prevented the development of scoliosis and ameliorated skeletal disease in the 
Phospho1-/- model of osteomalacia [167]. Enzyme replacement with a non-mineral-targeted, soluble, chimeric 
form of alkaline phosphatase composed of moieties from the intestinal and placental isozymes [168], has also 
shown effectiveness in reducing plasma PPi levels and extending life and ameliorating skeletal and dental deficits 
in the Alpl-/- model of infantile hypophosphatasia [169]. Finally, another potential strategy that could be developed 



therapeutically is to reduce PPi production by inhibiting ENPP1. Genetic experiments documented considerable 
improvement in the skeleton of [Alpl-/-; Enpp1-/-] double knockout mice [73]. The improvements were more 
pronounced in the axial than in the appendicular skeleton, due to the different ratios of expression of TNAP and 
ENPP1 at those anatomical sites [90,170]. 

Given that overexpression of TNAP in the arterial media or intima is sufficient to cause severe vascular 
calcification, inhibiting the inappropriately elevated levels of TNAP would represent a viable therapeutic strategy 
for ectopic calcification diseases. The Millan laboratory developed and characterized an arylsulphonamide 
uncompetitive inhibitor of TNAP, SBI-425 [171,172], capable of suppressing the inappropriately enhanced 
activity of TNAP in the vasculature [62,64] and restoring the local concentration of PPi, thus preventing further 
ectopic mineral deposition. They showed that systemic administration of SBI-425 by food admixture effectively 
prevented ectopic calcification in the muzzle of the Abcc6-/- model of PXE [46,173] and prevented vascular 
calcification in a murine model of chronic kidney disease [174]. DS-1211 (Daiichi Sankyo, Tokyo, Japan), a 
derivative of SBI-425, also showed efficacy in increasing plasma PPi concentrations and preventing ectopic 
calcification in the mouse model of PXE [175]. DS-1211 has now completed Phase I clinical trials [176] and has 
entered Phase II clinical trials as of November 2022 in patients with PXE (ClinicalTrials.gov Identifier: 
NCT05569252).  

Another obvious therapeutic strategy to enhance the production of PPi is to administer ENPP1, the enzyme 
responsible for the production of PPi from ATP. ENPP1-Fc is a recombinant protein, resulting from the fusion of 
the entire human active ENPP1 molecule and the Fc region of immunoglobulin to enhance its plasma half-life 
and facilitate its purification [177]. The subcutaneous administration of the ENPP1-Fc fusion protein prevented 
mortality and vascular calcification in the Enpp1asj/asj animal model of GACI [177] and has recently been shown 
to affect muzzle calcification in the Abcc6-/- model of PXE [178]. That initial construct, now called ENZ-701 
(Inozyme Pharma, Boston, MA) has progressed into ongoing Phase II clinical trials in patients with GACI and 
PXE (ClinicalTrials.gov Identifier: NCT05030831, ClinicalTrials.gov Identifier: NCT05030831). BL-1118 is a 
longer-lasting and more potent version of recombinant ENPP1-Fc characterized in 2021 [179,180], that has 
greatly improved pharmacodynamic properties compared to the original fusion enzyme used for proof-of-concept 
studies in the Enpp1asj/asj mouse model [177]. The use of the ENPP1-Fc biologic to generate systemic PPi from 
available systemic ATP levels has been shown effective in preventing heart, coronary artery, and kidney 
calcification in the Enpp1asj/asj model of GACI after weekly intraperitoneal injections [177] and muzzle calcification 
in the Abcc6-/-

 [178]. 

Conclusions 

Overwhelming evidence, both from animal models and clinical data, point to the fundamental role of the Pi/PPi 
ratio as the single-most important determinant of physiological mineralization and pathological calcification. 
Phosphatases present in matrix vesicles are crucial in controlling this all-important ratio and we have gained a 
deeper understanding of their interplay in recent years. ENPP1 and TNAP clearly control extracellular PPi 
formation and degradation, respectively. The double genetic experiment showing that the double ablation of 
PHOSPHO1 and TNAP leads to complete suppression of skeletal/dental mineralization also points to the 
requirement for enzymatic Pi-generation as a determinant of the physiologic Pi/PPi ratio. The phosphatases 
controlling the Pi/PPi ratio are druggable and of pharmaceutical interest. The realization of the crucial role of 
TNAP as the enzyme responsible for maintaining physiological concentrations of extracellular PPi has turned 
this enzyme into an approved life-saving treatment for hypophosphatasia as well as a pharmacological target for 
ectopic calcification, with a small molecule inhibitor now in clinical trials for PXE. ENPP1 enzyme replacement is 
currently in clinical trials for GACI and PXE. What remains poorly understood is how matrix vesicles are 
generated, and how they can propagate nascent apatitic mineral formed in their lumen onto the collagenous 
extracellular matrix. These are areas of very active current investigation in our laboratories.   

Acknowledgments 

The authors’ research cited in this review were produced in part with funding from the National Institutes of 
Health (NIH), in particular grants AR 53102 and AR47908 from the National Institute of Arthritis and 
Musculoskeletal Diseases (NIAMS), grant HL101899 from the National Heart, Lung and Blood Institute (NHLBI) 
and grant DE12889 from the National Institute of Dental and Craniofacial Research (NIDCR). We thank current 
and past members of our respective laboratories for their commitment to this field of study. 

 



 
List of abbreviations 
ABCC6= ATP-binding cassette sub-family C member 6 
ACDC= arterial calcification due to deficiency of CD73  
ADP= adenosine diphosphate 
ALPI= gene encoding for intestinal alkaline phosphatase 
ALPL= gene encoding for tissue non-specific alkaline phosphatase 
ALPP= gene encoding for placental alkaline phosphatase 
ALPPL2= gene encoding for germ cell alkaline phosphatase intestinal 
AMP= adenosine monophosphate 
ANK= inorganic pyrophosphate transport regulator 
ANKH=genes encoding for ANKH 
Apo-E= apolipoprotein E  
ARHR2= autosomal recessive hypophosphatemic rickets type 2   
ATP= adenosine triphosphate 
CD39= nucleoside triphosphate diphosphohydrolase 1  
CD73= ecto-5′-nucleotidase  
ecto-5'-NT or CD73= ecto-5'-Nucleotidase 
ENPP= ectonucleotide Pyrophosphatase/Phosphodiesterase  
ENPP1= nucleotide Pyrophosphatases/Phosphodiesterase 1  
ENPP6= nucleotide Pyrophosphatases/Phosphodiesterase 6  
E-NTPDase1 or CD39= Ecto-nucleoside triphosphate diphosphohydrolase 1  
ENTPD1= gene encoding for E-NTPDase1 
GACI= generalized arterial calcification of infancy 
GCAP= germ cell alkaline phosphatase 
HL-60= human leukemia cell line 
HSP70= 70 kD heat shock proteins 
IAP= intestinal alkaline phosphatase  
LDLR= low density lipoprotein receptor 
NKA= Na,K-ATPase  
NT5E= gene endocing for CD73 
OPN= osteopontin  
PHOSPHO1= orphan phosphatase 1 
PHEX= phosphate-regulating gene with homologies to endopeptidases on the X chromosome 
Pi= inorganic phosphate 
PiT-1= phosphate transporter 1 
PiT-2= phosphate transporter 2 
PLAP= placental alkaline phosphatase 
PPi= pyrophosphate 
SIBLING= small integrin-binding ligand N-linked glycoprotein 
SMPD3= sphingomyelin phosphodiesterase 3 
Tie2= Tyrosine-protein kinase receptor 
TNAP= tissue-nonspecific alkaline phosphatase 
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