14 research outputs found

    The Computational Techniques Developed to Analyze DNA Gel Images

    Full text link
    The analysis of gel electrophoresis images is very crucial for molecular biologists to comprehend and interpret their experimental results. Thus, enhancing current mathematical methods and developing new accurate ones is very important and challenging task for bioinformaticians. For example, enhancing the commonly used mathematical method in gel analysis known as "Fitting method estimation" and proposing a new efficient method entitled "Ruler estimation" for preprocessing a given image and detecting lanes and bands automatically. Both mathematical methods implemented in our newly developed software. Three mathematical models namely, linear, quadratic and cubic fitting are tested for the accuracy of detecting the bands and lanes in the gel image to determine the best fitting model. A friendly user interface is developed for this new program using MATLB GUI to extract useful bimolecular information accurately and automatically. The new software has the ability to manually add or delete any band(s) and estimate the size of any unknown band(s) on the gel. Moreover, the similarity and (dis)similarity between lanes "samples" are estimated based on comparing the numbers and sizes of bands to generate a phylogram tree

    Bioinformatics education—perspectives and challenges out of Africa

    Get PDF
    The discipline of bioinformatics has developed rapidly since the complete sequencing of the first genomes in the 1990s.The development of many high-throughput techniques during the last decades has ensured that bioinformatics has grown into a discipline that overlaps with, and is required for, the modern practice of virtually every field in the life sciences. This has placed a scientific premium on the availability of skilled bioinformaticians, a qualification that is extremely scarce on the African continent. The reasons for this are numerous, although the absence of a skilled bioinformatician at academic institutions to initiate a training process and build sustained capacity seems to be a common African shortcoming.This dearth of bioinformatics expertise has had a knock-on effect on the establishment of many modern high-throughput projects at African institutes, including the comprehensive and systematic analysis of genomes from African populations, which are among the most genetically diverse anywhere on the planet. Recent funding initiatives from the National Institutes of Health and theWellcomeTrust are aimed at ameliorating this shortcoming. In this paper, we discuss the problems that have limited the establishment of the bioinformatics field in Africa, as well as propose specific actions that will help with the education and training of bioinformaticians on the continent. This is an absolute requirement in anticipation of a boom in high-throughput approaches to human health issues unique to data from African populations

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Mathematical Modeling and Classification of Viruses from Herpesvirus Family

    No full text
    The process of modeling and classifications of viruses that belong to a specific family is an important for biologist and for many biological applications. There are many ways for Viruses families ' classification. The degree of similarity or diversity among the structure of the viruses capsid proteins is very useful in studying the Viruses families ' classification and their genetic evolution. It also important propose if we construct a mathematical model of the virus life cycle to be able to fully understand the life cycle of Viruses families ' activities. In this paper we introduce a proposed mathematical model for some Herpesvirus family viruses simple life cycle and comprehensive study for its classification using sequence alignment algorithms in order to demonstrate their genetic evolution according to the structure of their capsid protein. Herpesvirus family is considered one of the most important family in the families of the enveloped DNA viruses as it contain many dangerous viruses for human health. This family contain one of newly discovered viruses called Epstein–Barr virus (EBV), also called human herpesvirus 4 (HHV-4), which is one of the most common viruses in human. Infection with EBV occurs by the oral transfer of saliva [1] and genital secretions
    corecore