28 research outputs found

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Delta, Y144Delta, and LLA241/243Delta. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    Connected Health in Europe: Where are we today?

    Get PDF
    This report, which has grown out of an ENJECT survey of 19 European countries, examines the situation of Connected Health in Europe today. It focuses on creating a clear understanding of the current and developing presence of Connected Health throughout European healthcare systems under five headings: The Policy Environment, Education, Business and Health Models, Interoperability, and The Perso

    Small Reactors without On-site Refuelling: Neutronic Characteristics, Emergency Planning and Development Scenarios

    No full text
    Small reactors without on-site refuelling have a capability to operate without reloading or shuffling of fuel in their cores for reasonably long periods of time consistent with plant economy and considerations of energy security, with no fresh or spent fuel being stored at the site during reactor operation. In 2009, more than 25 design concepts of such reactors were analyzed or developed in IAEA Member States, representing both developed and developing countries. Small reactors without on-site refuelling are being developed for several reactor lines, including water cooled reactors, sodium cooled fast reactors, lead and lead bismuth cooled reactors, and also include some non-conventional concepts. To further research and development (R&D) in the areas mentioned above and several others, and to facilitate progress in Member States in design and technology development for small reactors without on-site refueling, the IAEA has conducted a dedicated Coordinated Research Project (CRP) entitled ‘Small Reactors without On-site Refuelling’ (CRPi25001). The project started late in 2004 and, after a review in 2008, was extended for one more year to be ended in 2009. The project has created a network of 18 research institutions from 10 Member States, representing both developed and developing countries. The objective of this report is to document reference points and conclusions achieved through coordinated research conducted within the CRP on ‘Small Reactors without On-site Refuelling’ and to suggest R&D activities to be furthered after the CRP completion. Being documented, the outputs of this CRP may foster further R&D and increase the capability of Member States to achieve progress in development and deployment of small reactors without on-site refuelling
    corecore