47 research outputs found

    Distress Tolerance and Use of Antiretroviral Therapy Among HIV-Infected Individuals in Substance Abuse Treatment

    Get PDF
    Despite recent clinical guidelines recommending early initiation and widespread use of antiretroviral therapy (ART), many HIV-infected individuals are not receiving ART—in particular low-income, minority substance users. Few studies have examined psychological, as opposed to structural, factors related to not receiving ART in this population. Perceived capacity to tolerate physical and psychological distress, known as distress tolerance (DT), may be a particularly relevant yet understudied factor. The current study tested the relationship between self-reported physical and psychological DT and ART receipt among predominantly low-income, minority HIV-infected substance users (n=77). Psychiatric disorders, biological indicators of health status, ART use, structural barriers to health care, and self-reported physical and psychological DT were assessed. 61% of participants were receiving ART. The only factors that distinguished individuals not on ART were greater avoidance of physical discomfort, higher psychological DT, and higher CD4 count. Both DT measures remained associated with ART use after controlling for CD4 count and were associated with almost a two-fold decrease in likelihood of ART receipt. Current findings suggest higher perceived capacity to tolerate psychological distress and greater avoidance of physical discomfort are important factors associated with lower ART use among substance users and may be important intervention targets

    Can behavioral theory inform the understanding of depression and medication nonadherence among HIV-positive substance users?

    Get PDF
    Medication adherence is highly predictive of health outcomes across chronic conditions, particularly HIV/AIDS. Depression is consistently associated with worse adherence, yet few studies have sought to understand how depression relates to adherence. This study tested three components of behavioral depression theory—goal-directed activation, positive reinforcement, and environmental punishment—as potential indirect effects in the relation between depressive symptoms and medication nonadherence among low-income, predominantly African American substance users (n = 83). Medication nonadherence was assessed as frequency of doses missed across common reasons for nonadherence. Non-parametric bootstrapping was used to evaluate the indirect effects. Of the three intermediary variables, there was only an indirect effect of environmental punishment; depressive symptoms were associated with greater nonadherence through greater environmental punishment. Goal-directed activation and positive reinforcement were unrelated to adherence. Findings suggest the importance of environmental punishment in the relation between depression and medication adherence and may inform future intervention efforts for this population

    Rumination Mediates the Relationship Between Distress Tolerance and Depressive Symptoms Among Substance Users

    Get PDF
    Distress tolerance has been implicated in the emergence of internalizing symptomatology, notably depressive symptoms. However, few studies have tested potential mechanisms underlying the relationship between distress tolerance and depressive symptoms, and further, this has not been tested among substance users, who commonly experience both low distress tolerance and elevated depressive symptoms. The current study focused on the construct of rumination, which has been suggested to be a coping response to stress associated with substance use and depression. Two forms of rumination, brooding and reflection, were tested as potential mediators of the relationship between distress tolerance and self-reported depressive symptoms among 128 individuals entering substance abuse treatment. Brooding (i.e., to overly focus on symptoms of distress) mediated the relationship between distress tolerance and depressive symptoms. However, reflection (i.e., to attempt to gain insight into problems) was unrelated to distress tolerance. Findings suggest the important role of brooding as a mechanism underlying the relationship between distress tolerance and depressive symptomatology

    TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    Get PDF
    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression

    Vaccine-Induced Protection Against Furunculosis Involves Pre-emptive Priming of Humoral Immunity in Arctic Charr

    Get PDF
    With respect to salmonid aquaculture, one of the most important bacterial pathogens due to high mortality and antibiotic usage is the causative agent of typical furunculosis, Aeromonas salmonicida spp. salmonicida (Asal). In Atlantic salmon, Salmo salar, the host response during infections with Asal is well-documented, with furunculosis outbreaks resulting in significant mortality in commercial settings. However, less is known about the host-pathogen interactions in the emerging aquaculture species, Arctic charr Salvelinus alpinus. Furthermore, there is no data on the efficacy or response of this species after vaccination with commonly administered vaccines against furunculosis. To this end, we examined the immunological response of S. alpinus during infection with Asal, with or without administration of vaccines (Forte Micro®, Forte Micro® + Renogen®, Elanco Animal Health). Artic charr (vaccinated or unvaccinated) were i.p.-injected with a virulent strain of Asal (106 CFUs/mL) and tissues were collected pre-infection/post-vaccination, 8, and 29 days post-infection. Unvaccinated Arctic charr were susceptible to Asal with 72% mortalities observed after 31 days. However, there was 72–82% protection in fish vaccinated with either the single or dual-vaccine, respectively. Protection in vaccinated fish was concordant with significantly higher serum IgM concentrations, and following RNA sequencing and transcriptome assembly, differential expression analysis revealed several patterns and pathways associated with the improved survival of vaccinated fish. Most striking was the dramatically higher basal expression of complement/coagulation factors, acute phase-proteins, and iron hemostasis proteins in pre-challenged, vaccinated fish. Remarkably, following Asal infection, this response was abrogated and instead the transcriptome was characterized by a lack of immune-stimulation compared to that of unvaccinated fish. Furthermore, where pathways of actin assembly and FcγR-mediated phagocytosis were significantly differentially regulated in unvaccinated fish, vaccinated fish showed either the opposite regulation (ForteMicro®), or no impact at all (ForteMicro®Renogen®). The present data indicates that vaccine-induced protection against Asal relies on the pre-activation and immediate control of humoral immune parameters that is coincident with reduced activation of apoptotic (e.g., NF-κB) and actin-associated pathways

    Priority strategies to improve gender equity in Canadian emergency medicine: proceedings from the CAEP 2021 Academic Symposium on leadership

    Get PDF
    Objectives: Gender inequities are deeply rooted in our society and have significant negative consequences. Female physicians experience numerous gender-related inequities (e.g., microaggressions, harassment, violence). These inequities have far-reaching consequences on health, well-being and career longevity and may result in the devaluing of various strengths that female emergency physicians bring to the table. This, in turn, has an impact on patient healthcare experience and outcomes. During the 2021 Canadian Association of Emergency Physicians (CAEP) Academic Symposium, a national collaborative sought to understand gender inequities in emergency medicine in Canada. Methods: We used a multistep stakeholder-engagement-based approach (harnessing both quantitative and qualitative methods) to identify and prioritize problems with gender equity in emergency medicine in Canada. Based on expert consultation and literature review, we developed recommendations to effect change for the higher priority problems. We then conducted a nationwide consultation with the Canadian emergency medicine community via online engagement and the CAEP Academic Symposium to ensure that these priority problems and solutions were appropriate for the Canadian context. Conclusion: Via the above process, 15 recommendations were developed to address five unique problem areas. There is a dearth of research in this important area and we hope this preliminary work will serve as a starting point to fuel further research. To facilitate these scholarly endeavors, we have appended additional documents identifying other key problems with gender equity in emergency medicine in Canada as well as proposed next steps for future research

    Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions

    Get PDF
    The control and interaction between nitrogen and carbon assimilatory pathways is essential in both photosynthetic and non-photosynthetic tissue in order to support metabolic processes without compromising growth. Physiological differences between the basal and mature region of wheat (Triticum aestivum) primary leaves confirmed that there was a change from heterotrophic to autotrophic metabolism. Fourier Transform Infrared (FT-IR) spectroscopy confirmed the suitability and phenotypic reproducibility of the leaf growth conditions. Principal Component–Discriminant Function Analysis (PC–DFA) revealed distinct clustering between base, and tip sections of the developing wheat leaf, and from plants grown in the presence or absence of nitrate. Gas Chromatography-Time of Flight/Mass Spectrometry (GC-TOF/MS) combined with multivariate and univariate analyses, and Bayesian network (BN) analysis, distinguished different tissues and confirmed the physiological switch from high rates of respiration to photosynthesis along the leaf. The operation of nitrogen metabolism impacted on the levels and distribution of amino acids, organic acids and carbohydrates within the wheat leaf. In plants grown in the presence of nitrate there was reduced levels of a number of sugar metabolites in the leaf base and an increase in maltose levels, possibly reflecting an increase in starch turnover. The value of using this combined metabolomics analysis for further functional investigations in the future are discussed

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore