3,443 research outputs found

    Olive Mill wastewater bioremediation by Bjerkandera paranensis: a sustainability and technological evaluation

    Get PDF
    Remediation of olive mill wastewater (OMW) is an important issue associated with olive-oil manufacturing, a widespread activity in the Mediterranean area. This high organic loading effluent contains water, organic acids, high-molecular-weight polyphenols such as tannins, antocyanins and catechins, which are considered to be responsible for its brownish black colour and toxic properties. The composition of OMWs is highly variable with respect to each individual component, depending on the process conditions and on the agricultural specificities. In this work, the ability of a “white-rot” fungus, Bjerkandera paranensis, to use undiluted OMW from a two phase process mill (COD = 11.1 gl-1; Phenol Content = 3.9 gl-1; ColourAbs395nm = 7.8) as a substrate was studied. The biodegradation potential of B. paranensis was assessed monitoring several physico-chemical parameters. A chronic ecotoxicity test (Vibrio fisheri growth inhibition test) was carried out to follow the detoxification ability of this fungus. In work, the results demonstrate that OMW was a suitable medium for cultivation of B. paranensis, with corresponding changes in the physico-chemical properties of the OMW. The results showed that B. paranensis removed 93% phenols and 54% COD from the culture medium within 21 days of treatment. In addition, the IC50s values obtained for the different treated samples showed a significant decrease in the effluent chronic toxicity to V. fischeri when the OMW pH was adjusted to 6.0 prior to the treatment (71.8 %), highlighting the OMW detoxification capacity of B. paranensi

    New approaches to olive mill wastes bioremediation

    Get PDF
    Remediation of olive mill wastewater (OMW) is an important issue associated with olive-oil manufacturing, a widespread activity in the Mediterranean area. This high organic loading effluent contains water, organic acids, high-molecular-weight polyphenols such as tannins, antocyanins and catechins, which are considered to be responsible for its brownish black colour and ecotoxic properties. The composition of OMWs is highly variable with respect to each individual component, depending on the process conditions and on the agricultural specificities. Thus, different approaches are applicable concerning to OMW treatment and valorisation , considering the specificities of its production and in particular the oil extraction process. Besides there are several physical, physico-chemical, biological and combined processes to OMW detoxification, each may represent an opportunity for a specific condition. It is important to explore new possibilities that are both environmentally sustainable and economically viable. Under the biological processes the use of fungi and in particular white-rot fungi present a potential interesting alternative for depollution and biological chemicals production or for protein production for feeding. In this aspect we have been testing the ability of a “white-rot” fungus, Bjerkandera paranensis, to use undiluted OMW from a two phase process mill. A chronic ecotoxicity test (Vibrio fisheri growth inhibition test) demonstrated that the growth of this fungus contributed for a significant decrease of the OMW ecotoxicity and demonstrating the potential for further studies with this strain for an alternative biological route to OMW treatment and valorization

    Antioxidant capacities of flavones and benefits in oxidative-stress related diseases

    Get PDF
    Flavonoids, a group of secondary metabolites widely distributed in the plant kingdom, have been acknowledged for their interesting medicinal properties. Among them, natural flavones, as well as some of their synthetic derivatives, have been shown to exhibit several biological activities, including antioxidant, anti-inflammatory, antitumor, anti-allergic, neuroprotective, cardioprotective and antimicrobial. The antioxidant properties of flavones allow them to demonstrate potential application as preventive and attenuating agents in oxidative stress, i.e., a biological condition that is closely associated to aging process and several diseases. Some flavones interfere in distinct oxidative-stress related events by directly reducing the levels of intracellular free radicals (hydroxyl, superoxide and nitric oxide) and/or of reactive species (e.g. hydrogen peroxide, peroxynitrite and hypochlorous acid) thus preventing their amplification and the consequent damage of other biomolecules such as lipids, proteins and DNA. Flavones can also hinder the activity of central free radical-producing enzymes, such as xanthine oxidase and nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) or inducible nitric oxide synthase (iNOS) and can even modulate the intracellular levels of pro-oxidant and/or antioxidant enzymes. The evaluation of flavones antioxidant ability has been extensively determined in chemical or biological in vitro models, but in vivo therapy with individual flavones or with flavones-enriched extracts has also been reported. The present manuscript revises relevant studies focusing the preventive effects of flavones on stress-related diseases, namely the neurological and cardiovascular diseases, and diabetes and its associated complications

    Mediterranean diet: a precious tool for fighting inflammatory diseases

    Get PDF
    Epidemiological studies indicate that populations who consume foods rich in specific polyphenols have lower incidence of inflammatory diseases. In turn, Mediterranean diet, claimed for its several health benefits, provides a wide range of foods which are particularly enriched sources of polyphenols, some of which known for their anti-inflammatory properties. In this context, various herbs, vegetables and fruits, as well as fruit derivative products, such as wine and virgin olive oil, are believed to have an important role preventing and/or ameliorating inflammatory conditions through diet. Additionally, they are strong candidates for anti-inflammatory drugs. In general, the anti-inflammatory properties of polyphenols involve the modulation of pro-inflammatory gene expression including cyclooxygenase, lipoxygenase, nitric oxide synthases and several pivotal cytokines such as TNF-α, interleukin-1 (IL-1) and interleukin-6 (IL-6), mainly by acting through nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. Since inflammation is a phenomenon present in many chronic diseases including cancer, diabetes, obesity, and cardiovascular disease, the modulation of the aforementioned markers by polyphenols may positively contribute for the prevention and/or amelioration of these diseases. The present chapter focus various edible Mediterranean typical foods known for their anti-inflammatory properties, as well as the main pheno-lic constituents associated to the protection process and their underlying mechanisms of action

    Leveraging deep neural networks for automatic and standardised wound image acquisition

    Get PDF
    Wound monitoring is a time-consuming and error-prone activity performed daily by healthcare professionals. Capturing wound images is crucial in the current clinical practice, though image inadequacy can undermine further assessments. To provide sufficient information for wound analysis, the images should also contain a minimal periwound area. This work proposes an automatic wound image acquisition methodology that exploits deep learning models to guarantee compliance with the mentioned adequacy requirements, using a marker as a metric reference. A RetinaNet model detects the wound and marker regions, further analysed by a post-processing module that validates if both structures are present and verifies that a periwound radius of 4 centimetres is included. This pipeline was integrated into a mobile application that processes the camera frames and automatically acquires the image once the adequacy requirements are met. The detection model achieved [email protected] values of 0.39 and 0.95 for wound and marker detection, exhibiting a robust detection performance for varying acquisition conditions. Mobile tests demonstrated that the application is responsive, requiring 1.4 seconds on average to acquire an image. The robustness of this solution for real-time smartphone-based usage evidences its capability to standardise the acquisition of adequate wound images, providing a powerful tool for healthcare professionals.info:eu-repo/semantics/publishedVersio

    Exploring the physiological role of transthyretin in glucose metabolism in the liver

    Get PDF
    Transthyretin (TTR), a 55 kDa evolutionarily conserved protein, presents altered levels in several conditions, including malnutrition, inflammation, diabetes, and Alzheimer’s Disease. It has been shown that TTR is involved in several functions, such as insulin release from pancreatic ß-cells, recovery of blood glucose and glucagon levels of the islets of Langerhans, food intake, and body weight. Here, the role of TTR in hepatic glucose metabolism was explored by studying the levels of glucose in mice with different TTR genetic backgrounds, namely with two copies of the TTR gene, TTR+/+; with only one copy, TTR+/-; and without TTR, TTR-/-. Results showed that TTR haploinsufficiency (TTR+/-) leads to higher glucose in both plasma and in primary hepatocyte culture media and lower expression of the influx glucose transporters, GLUT1, GLUT3, and GLUT4. Further, we showed that TTR haploinsufficiency decreases pyruvate kinase M type (PKM) levels in mice livers, by qRT-PCR, but it does not affect the hepatic production of the studied metabolites, as determined by 1H NMR. Finally, we demonstrated that TTR increases mitochondrial density in HepG2 cells and that TTR insufficiency triggers a higher degree of oxidative phosphorylation in the liver. Altogether, these results indicate that TTR contributes to the homeostasis of glucose by regulating the levels of glucose transporters and PKM enzyme and by protecting against mitochondrial oxidative stress.This work was supported by Norte-01-0145-FEDER-000008-Porto Neurosciences and Neurologic Disease Research Initiative at I3S, and Pest-OE/SAU/UI0215/2014 at UMIB, supported by Norte Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement, by COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, through the European Regional Development Fund (FEDER), by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274), and by a grant from Fundação Millennium bcp. Alemi M was a recipient of fellowship by Norte-01-0145-FEDER-000008. Oliveira  was a recipient of fellowship by Norte-01-0145-FEDER-000008. Cardoso I, Oliveira PF, and Alves MG work under the Investigator FCT Program, which is financed by national funds through the Foundation for Science and Technology and co-financed by the European Social Fund (ESF) through the Human Potential Operational Programme (HPOP), type 4.2—Promotion of Scientific Employment

    Draft Genome Sequence of a Community-Associated Methicillin- Resistant Panton-Valentine Leukocidin-Positive Staphylococcus aureus Sequence Type 30 Isolate from a Pediatric Patient with a Lung Infection in Brazil

    Get PDF
    The sequence of methicillin-resistant Staphylococcus aureus strain B6 (sequence type 30 [ST30], spa type t433, staphylococcal chromosomal cassette mec element [SCCmec] type IVc, Panton-Valentine leukocidin [PVL] positive), isolated from a pediatric patient with a lung infection in Niterói, Rio de Janeiro, Brazil, is described here. The draft genome sequence includes a 2.8-Mb chromosome, accompanied by a 20-kb plasmid containing blaZ and two small cryptic plasmids
    corecore