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Abstract: 18 
Flavonoids, a group of secondary metabolites widely distributed in the plant kingdom, have been 19 

acknowledged for their interesting medicinal properties. Among them, natural flavones, as well as some 20 

of their synthetic derivatives, have been shown to exhibit several biological activities, including 21 

antioxidant, anti-inflammatory, antitumor, anti-allergic, neuroprotective, cardioprotective and 22 

antimicrobial.  The antioxidant properties of flavones allow them to demonstrate potential application as 23 

preventive and attenuating agents in oxidative stress, i.e., a biological condition that is closely associated 24 

to aging process and to several diseases. Some flavones interfere in distinct oxidative-stress related events 25 

by directly reducing the levels of intracellular free radicals (hydroxyl, superoxide and nitric oxide) and/or 26 

of reactive species (e.g. hydrogen peroxide, peroxynitrite and hypochlorous acid) thus preventing their 27 

amplification and the consequent damage of other biomolecules such as lipids, proteins and DNA. 28 

Flavones can also hinder the activity of central free radical-producing enzymes, such as xanthine oxidase 29 

and nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) or inducible nitric oxide 30 

synthase (iNOS) and can even modulate the intracellular levels of pro-oxidant and/or antioxidant 31 

enzymes. The evaluation of flavones antioxidant ability has been extensively determined in chemical or 32 

biological in vitro models, but in vivo therapy with individual flavones or with flavones-enriched extracts 33 

has also been reported. The present manuscript revises relevant studies focusing the preventive effects of 34 

flavones on stress-related diseases, namely the neurological and cardiovascular diseases, and diabetes and 35 

its associated complications. 36 

 37 
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1. INTRODUCTION 46 

1.1. General Structure and Function 47 

Flavones are one of the main classes of flavonoids i.e., a group compounds characterized by a 48 

C15 basic skeleton composed of a benzene ring (A-ring) fused to a heterocyclic pyran ring (C-ring), 49 

having a phenyl substitution most often at the 2-position (B-ring). In particular, flavones are characterized 50 

by the presence of a double bond between the 2- and 3- positions in the heterocyclic C-ring and the 51 

lacking of oxygenation at the 3-position of the same ring (Fig. 1). 52 

Typical variations in the basic structure of the flavones include OH- and OMe-substitution, 53 

mainly in the A- and B-rings. Other groups such as C-methyl, methylenedioxy, C- and O-prenyl, pyran, 54 

furan and aromatic have also been described [1]. Moreover, natural flavones occur as aglycone or 55 

alternatively, as hexosides or acylated glucosides [2].  56 

 57 

 58 

 59 

Fig. (1). General structure of flavones. 60 

 61 

 The natural flavones are secondary metabolites from vascular plants and, likewise other 62 

flavonoids, they are key players in plant development and growth. Some flavones are also involved in 63 

plant survival due their ability to act as ultraviolet filters, as well as to protect the plants from microbial, 64 

insect and even from mammalian herbivor attack [2-3]. Althoug flavones are classified as colourless 65 

compounds, they can act as co-pigments of anthocyanins, providing attractive colours to plant pollinators 66 

[2-3]. 67 

 Main natural flavones comprise chrysin, balcalein, scutellarein, nobiletin, luteolin, apigenin, 68 

tangeritin and 6-hydroxyflavone. From those, luteolin and apigenin are widespread in grains, leafy 69 

vegetables, and herbs and are considered to be the most representative ones in food sources [1, 4]. High 70 

concentrations of luteolin are particularly found in celery seeds (aproximatly 800 mg/100 g) while 71 

moderate amounts are found in thyme, sage, oregano, olives, peppermint, green peppers, chilli pepper 72 

green, parsley, lemon, red lettuce and sweet pepper red. Apigenin is mainly found in parsley and celery 73 

seeds [1, 5].  74 

 The daily intake of flavones is widely variable amongst populations, depending on their specific 75 

dietary food habits. It has been estimated that the mean intake of apigenin and luteolin by Chinese 76 

population is aproximatly 1.1 and 3.8 mg/day [6], respectively, while the total intake of these two 77 

flavones by Australian and Spanish populations accounts up to 0.05 and 3.6 mg/day [7], [8]. Correlations 78 

between the intake of flavones and their in vivo effects are still under debate, as their bioavailability is not 79 

completely elucidated. Indeed, although it is presently accepted that ingested flavones (likewise other 80 

simple phenolics) can be partially absorbed in the small intestine and suffer metabolization in the liver as 81 
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signalization for excretion from the body, further studies need to be carried out in order to fully 82 

understand the effective concentrations of flavones in the target organs (e.g elucidation of absorbable 83 

low-molecular-weight phenolic metabolites which are produced by gut microbial flora and possible 84 

accumulation in body tissues) [5, 9]. 85 

 86 

 87 

1.2. Oxidative Processes 88 

 Mitochondria is the primary site of generation of reactive oxygen species (ROS) in aerobic cells, 89 

since the univalente reduction of triplet-state molecular oxygen results in the production of superoxide 90 

anion (O2
•¯

) [10]. This species can also be produced by other celular enzymes such as xanthine oxidase 91 

and NADPH-oxidases (Fig. 2). Despite the relatively low reactivity of O2
•¯

, this species can be converted, 92 

through enzymatic or nonenzymatic reactions, to highly reactive ROS (e.g. hydroxyl radical (OH
•
)) or 93 

reactive nitrogen species (RNS), namely peroxynitrite (ONOO
¯
) [11]. The former results from its 94 

conversion of O2
•¯

 to hydrogen peroxide (H2O2) and it’s subsequent reduction, which occurs either in the 95 

absence or in the presence of reduced transition metals. In turn, ONOO
¯
 results from the reaction of O2

•¯
 96 

with nitric oxide (NO
•
), a reactive species that is produced by nitric oxide synthases (NOS) when 97 

converting arginine into citruline. Elevated amounts of NO
•
 are particularly produced by inducible nitric 98 

oxide synthase (iNOS), a pro-oxidant enzyme which is highly expressed in inflammatory cells upon 99 

stimulation by exogenous or endogenous stimuli [12-15].   100 

 101 

 102 

 103 

Fig. (2). Schematic representation of formation and enzymatic neutralization processes of the superoxide radicals and 104 

its derivatives. Superoxide anion (O2•¯) is converted into the ONOO¯ (a highly reactive species), in the presence of 105 

nitric oxide (NO•), thus causing serious cellular damages that might end in necrosis and/or apoptosis. In turn, 106 
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superoxide dismutase (SOD) is an antioxidant enzyme capable of converting O2•¯ into hydrogen peroxide (H2O2). 107 

The latter might follow two paths: 1- In presence of Fe2+, the Fenton reaction occurs, converting H2O2
 into hydroxyl 108 

radicals (OH•) which, similarly to ONOO¯, is highly reactive and will cause cellular damage/death; 2- Converted into 109 

water (H2O) and oxygen (O2) by the antioxidant enzymes catalase (CAT) or glutathione peroxidase (GSH-px). This 110 

latter enzyme uses the reduced form of glutathione (GSH) as an electron donor to convert the H2O2, producing 111 

gluthatione disulfide (GSSG), which in turn can be converted back again into GSH by glutathione reductase (GSSG-112 

red) using NADPH as an electron donor. 113 

 114 

 Notably, cells have several mechanisms to maintain the redox homeostasis, i.e., the balance 115 

between ROS and RNS generation and their elimination [16]. The consumption or deactivation of said 116 

compounds occurs via the action of both enzymatic and non-enzymatic/simple antioxidants [11, 17]. For 117 

instance, superoxide radical is converted to oxygen and hydrogen peroxide by the enzyme superoxide 118 

dismutase (SOD) where the latter is transformed to water and oxygen by the enzyme catalase (CAT), 119 

while glutathione peroxidase (GSH-px) reduces lipid hydroperoxides to their corresponding alcohols and 120 

reduces free hydrogen peroxide to water (see Fig. 2) [18]. The latter enzyme makes use of glutathione 121 

(GSH) as an electron donor, converting it into glutathione disulfide (GSSG), which in turn is regenerated 122 

by glutathione reductase (GSSG-red) into GSH again. Therefore, GSH is a pivotal endogenous molecule 123 

on cellular antioxidant defenses. It is also important to refer to the central role of the nuclear factor 124 

(erythroid-derived 2)-like 2 (Nrf2), which is known as the “master regulator” of the antioxidant response, 125 

since it is responsible for the modulation of the expression of hundreds of genes, including those that 126 

encode the antioxidant enzymes mentioned before. The activity of this transcription factor is triggered on 127 

oxidative stress conditions, causing its translocation to the nucleus where it will upregulate the expression 128 

of several genes of antioxidant and cytoprotective enzymes in order to restore the balance. In turn, 129 

vitamin A, C and E, as well as caffeine are examples of non-enzymatic antioxidants [19-20].  130 

When the balance for production vs. elimination of ROS and RNS is disrupted, the cell enters 131 

into an oxidative stress state, which will trigger the activation of some signalling cascades. One of the 132 

most important cell responses is mediated by nuclear factor-kB (NF-kB), a transcription factor that plays 133 

a crucial role in inflammation, immunity, cell proliferation, apoptosis and other cellular cycles.  134 

This transcription factor is normally maintained as inactive in the cytoplasm of non-stimulated cells by 135 

endogenous inhibitors, namely inhibitor of kB (I-kB). Under stress conditions, this transcription factor 136 

dissociates from its inhibitor and translocates to the nucleus, binding to DNA’s promoter or enhancer 137 

regions, causing an increase in the expression of several genes that in turn will promote the transcription 138 

of several pro-inflammatory cytokines and enzymes, resulting in an overall increment of oxidative stress 139 

[21]. In a similar way, the activation of mitogen activated protein kinases (MAPKs) signalling cascade, 140 

also triggered by oxidative stress conditions, causes dimerization of c-Jun and c-Fos into activator protein 141 

1 (AP-1) [21]. 142 

Hence, the overproduction of reactive species is settled in a vicious cycle way in oxidative stress 143 

conditions, since the high concentration of one reactive species stimulates further formation of ROS and 144 

RNS [17]. As an overall result, reactive species may cause damage in lipids, proteins, DNA and other 145 

macromolecules [16-17, 22], resulting in several pathological conditions [19].  146 

 147 

http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Organic_peroxide
http://en.wikipedia.org/wiki/Alcohol
http://en.wikipedia.org/wiki/Hydrogen_peroxide
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2. ANTIOXIDANT PROPERTIES: STRUCTURE-FUNCTION RELATIONSHIPS 148 

In recent decades, a wide range of biological activities have been described for flavones [23], 149 

with particular emphasis on their antioxidant and protective ability on oxidative stress-related conditions. 150 

These capacities render flavones a great application in several fields, including the food, cosmetic and 151 

pharmaceutical industries, as well as in medicine [4].  152 

However, as referred before, the bioavailability of these compounds is still subject to debate, as this is 153 

influenced by many factors which are distinct in between different populations and even within the same 154 

population. Notwithstanding, it is presently accepted that once ingested, only a portion of low-molecular-155 

weight polyphenols may be readily absorbed in the small intestine, while 90-95% accumulate in the large 156 

intestinal lumen. Recent literature data also suggest that these non-absorbable compounds can be 157 

subjected to the enzymatic activities of the gut microbial flora and transformed into a series of absorbable 158 

low-molecular-weight phenolic metabolites [24-26]. 159 

Nonetheless, it is believed that flavones have both direct and indirect antioxidant properties. The 160 

direct effects include their ability to scavenge free radicals (e.g. superoxide anion radicals, hydroxyl 161 

radicals), to quench ROS (e.g. singlet oxygen) and to chelate metal ions and inhibit lipid peroxidation. In 162 

turn, the indirect effects of flavones are related to the modulation of the activity of key enzymes and/or 163 

interaction with receptors [27]. The main structural-fuction relationships elucidated so far, regarding the 164 

antioxidant abilities of flavones, are summarized below.  165 

 166 

 167 

2.1. Direct antioxidant effects 168 

 Similarly to other antioxidants, flavones counteract radicals mainly by two mechanisms, namely 169 

Hydrogen Atom Transfer (HAT) and by Single Electron Transfer (SET).  170 

As a result of an HAT reaction, an hydrogen atom is transferred from the flavone (FlOH) to the 171 

radical. The reaction between a flavone and a free radical results in a flavone phenoxyl radical (FlO
•
) and 172 

a stable substance (RH) (Eq 1a). The flavone phenoxyl radical formed could then react with other radicals 173 

((Eq 1b) R
• 
or (Eq 1c) FlO

•
) by radical-radical termination reactions, resulting in the formation of an 174 

unreactive compound i.e., (Eq 1b) FlO-R or (Eq 1c) FlO-OFl, respectively) [4, 28-30]. On the other hand, 175 

in a SET reaction, the flavone transfer one electron to reduce the radical, metals or carbonyls (Eq 2) [31]. 176 

 177 

Eq 1a. FlOH + R• → FlO• + RH 178 

Scavenging reaction 179 

 180 

Eq 1b. FlO• + R• → FlO-R 181 

Radical-radical coupling reaction 182 

 183 

Eq 1c. FlO• + FlO• → FlO-OFl 184 

Radical-radical coupling reaction 185 

 186 

Eq 2. FlOH + R• → FlOH• + R¯ 187 

Single-electron transfer reaction 188 
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 Note that HAT and SET mechanisms may occur in parallel, the main mechanism being 189 

determined by the structural properties of the antioxidant, together with pH, solubility, partition 190 

coefficient and system solvent [31]. At present, researchers believe that HAT is the most relevant 191 

mechanism to human biology [32-33]. 192 

 Generalistic methods for measuring radical scavenging capacity of antioxidants, in particular the 193 

chemical assays that use molecular probes e.g. trolox equivalent antioxidant capacity (TEAC), 2,2-194 

diphenyl-1-picrylhydrazyl radical (DPPH) scavenging capacity, ferric ion reducing antioxidant power 195 

(FRAP), oxygen radical absorbance capacity (ORAC) and trapping antioxidant parameter (TRAP), have 196 

also been extensively applied to flavones [15, 34]. With the exception of the last two, the remaining are 197 

simple methods to measure the ability of an oxidant to undergo single electron transfer reactions [32]. On 198 

the other hand, TRAP and ORAC assays evaluate the capability of an antioxidant to inhibit peroxyl 199 

radical-induced oxidations, through H-atom donation [32]. 200 

 The main structural features of flavones for conditioning their radical scavenging activity 201 

enclose (A) the 2,3-double bond in the C-ring in conjugation to 4-keto group in the C ring; (B) the ortho-202 

dihydroxy (catechol) group in the B-ring and (C) the presence of an hydroxyl group at position 5 (Fig. 3) 203 

[23, 35-36].  204 

 205 

 206 
 207 

Fig. (3). Major structural requirements for radical scavenging activity of flavones. 208 
 209 

 210 

 Notably, the 2, 3 double bond, in conjugation with the 4-keto group in the C-ring is responsible 211 

for the electronic delocalization starting from the B-ring [36], allowing the semiquinone radical to donate 212 

an electron and forming the stable-quinone structure, which is essential for SET mechanism. This 213 

capacity is improved by OH groups on the B-ring that decrease the O-H bond dissociation energy (BDE) 214 

and act as electron-donating groups [23]. 215 

 The catechol moiety on the B-ring confers high stability on the radical species through H-bond 216 

formation and also participates in electron delocalization, by increasing the electron density at the 217 

hydroxyl group and lowering the oxygenhydrogen bond energy [3, 27, 36]. The catechol group has been 218 

associated to the promotion of scavenging activity against peroxyl, superoxide and peroxynitrite radicals 219 

[30, 37]. Leopoldini and colleagues [36] showed that flavonoids with this dihydroxy functionality are the 220 

most active in donating an H atom while Rice-Evans et al. [38] concluded that this functionality 221 

contributes at about 25% for the antioxidant activity of luteolin (1) comparing to that of apigenin (2) and 222 

chrysin (3) (Fig. 4).   223 

 224 

A 

B 

C 
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 230 
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 232 
 233 
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 239 
 240 
 241 
 242 
 243 

                 244 
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 246 
 247 
Fig. (4). Chemical structures of flavones. The reference numbers for the compound structures are used 248 
throughout the manuscript. 249 
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 When present, the hydroxyl group at 5-position forms hydrogen bonds with the 4-keto group and 250 

in this condition the B-ring is slightly tilted with respect to the plane of A and C rings, thus facilitating the 251 

antioxidant action. The presence of additional OH group(s) on B-ring enhances its antioxidant action. 252 

Apigenin and luteolin are good candidates for the one-electron-transfer mechanism due to their planar 253 

conformation and the extended electronic delocalization between nearby rings [36]. 254 

 Besides the previous mentioned factors, some additional properties can be marked as 255 

conditioning factors for the the scavenging properties of flavones. E.g. the synergistic interaction between 256 

flavones and other physiological antioxidants such as ascorbate or tocopherol is described as important in 257 

improving the radical scavenging capacity of flavones [23]. Baicalein (4) is an example of this 258 

phenomenon. Albeit this flavone has low antioxidant capacity, it has been shown to have a good anti-259 

lipoxidation effect in 2,2′-azobis(2,4-dimethylvaleronitrile)-induced liposomal membranes, due to 260 

synergistic effects with beta-carotene [39]. 261 

 Chelating of metal ions such as the chelating of catalytically active metal (e.g. Cu (I), Fe (II) and 262 

Fe (III)) is also a relevant mechanism for the antioxidant activities of flavones with important role in 263 

cellular protection. The reaction of a phenoxyl radical and metal ions produces a radical anion that is the 264 

most stable structure.  265 

 Remarkably, the 5-hydroxyl group associated with the 4-keto and catecholic hydroxyl groups are 266 

extremely important to this capacity. In flavones, the metal-complexing sites are thought to occur 267 

between the hydroxyl at 5-position and the 4-keto group, as well as in between the ortho-hydroxyls on the 268 

B-ring (Fig. 5). Additionally, a study performed by Mira et al [40] indicated that the combined presence 269 

of 2,3-double bond (C-ring) and cathecol (B-ring) is an important feature for Fe
3+

 reducing activity while 270 

the cathecol group and the number of hydroxyl groups in A-ring plays a central role to Cu
2+ 

reducing 271 

activity [40-41]. 272 

 These reactions prevent the generation of oxidizing species (e.g. acting as initiators of lipid 273 

peroxidation or of the lipoxygenase reaction) and also highly reactive hydroxyl radicals that eventually 274 

could be formed by Fenton-type reactions [42]. 275 

 276 

 277 
Fig. (5). Possible sites for chelating the transition metal ions on flavones (adapted from [23]). 278 

 279 

 280 

2.2. Indirect antioxidant effects 281 

Xanthine oxidase (XO) is the unique enzyme for which structure-fuction relations have been 282 

partially clarified for flavones. This is a molybdoflavoprotein that is involved in the metabolism of 283 
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purines by catalyzing the conversion of hypoxanthine to xanthine and that of xanthine to uric acid (Fig. 284 

6), with the release of superoxide anion radical or hydrogen peroxide [43-45].  285 

 286 

 287 
 288 

Fig. (6). Conversion of hypoxanthine to xanthine and of xanthine to uric acid, by xanthine oxidase. 289 
 290 
 291 
 292 

In this regard, the inhibition of XO is very important because it prevents the production of 293 

excessive uric acid thus avoiding hyperuricemia, as well as the prevention of excessive levels of ROS 294 

[23]. Table 1 shows the IC50 values of distinct flavones for XO inhibiton. 295 

 296 

Table 1. IC50 values of distinct flavones for XO inhibition.    297 
 298 

Flavone IC50 (µM) Reference 

Apigenin 1/0.70 [46-47] 

Baicalein 2.79 [47] 

Chrysin 2.5/ 0.84 [46-47] 

Luteolin 0.75/0.55 [46-47] 

7, 3,4’-trihydroxyflavone  (5) 4 [46] 

7, 8, 3’, 4’-tetrahydroxyflavone (6) 10 [46] 

3’,4’-dihydroxyflavone (7) 40 [46] 

7-hydroxyflavone  (8) 40 [46] 

 299 

  300 
Rastelli and co-workers [48] proposed a model for flavones-xanthine oxidase interaction, based 301 

on similarities between the flavones and the substrates or inhibitors of the enzyme. Relevant points 302 

comprised (A) the matches of the negative electrostatic potential of oxygen in C-7 of flavones skeleton 303 

with that of the carbonyl group at C-6 in xanthine, due to the extended delocalization of negative charges 304 

over the entire benzo-pyrone structure; (B) the lone-pair minima of O-4 approaching the negative 305 

potential of N-3 and N-9 of hypoxanthine and xanthine, respectively; (C) the superimposition of 2-phenyl 306 

rings of flavones with the phenyl group of the most potent purine inhibitors of the enzyme (as a 307 

consequence of the carbonyl superimposition, a group that is essential for activity), thus suggesting that 2-308 

phenyl ring is responsible for hydrophobic interactions with the XO in the same location as the inhibitors; 309 

(D) the presence of a substituent at C-4’ (in addition to an hydroxyl group at C-7) enhanced the flavone´s 310 

activity mainly because it is involved in dispersion interactions with XO. Notably, the presence of a 311 

hydroxyl group at C-7 is established as fundamental to the inhibitory effect of flavones on XO, mainly 312 

because this is responsible for the binding of flavone to the active site of the enzyme and it has a low pKa 313 

thus ensuring that there is enough dissociated form at physiological pH. Moreover, this group allows 314 

hydrophobic interactions between the flavone and XO [23, 48]. 315 

From experimental and theoretical results obtained more recently, several authors concluded that 316 

along with the mentioned factors, the substitution of hydroxyl groups at 5- and 7-positions, as well as the 317 
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substitution of a catechol or a 3’,4’,5’-pyrogallol functionality, are also structurally important factors 318 

contributing to the inhibition of XO by flavones [23, 47].  319 

 Notwithstanding, there are already some findings of the structure-activity relation between 320 

flavones and other enzymes such as iNOS. In the investigation of Kim et al. (1999), the authors have 321 

concluded that the most active flavonoids inhibiting the iNOS were those containing a C-2,3 double bond 322 

(such as in flavones) and 5,7-dihydroxyl groups in the A-ring. Furthermore, the substitution of hydroxyl 323 

groups at 4’- or 3’,4’- in the B-ring (apigenin and luteolin, respectively) may contribute to the inhibitory 324 

effect on iNOS [49-50]. 325 

 Moreover, evidence points to these same structural features are related to the capacity of 326 

attenuating MAPKs signaling by interfering with c-Fos, and c-Jun gene expression expressions and AP-1 327 

transcriptional activity, as well as interfering with IkB kinases (IKK)/NF-kB pathaway [51]. 328 

 329 

 330 

3. ROLES OF FLAVONES IN OXIDATIVE STRESS-RELATED DISEASES 331 

Oxidative stress, i.e., the physiological condition arising from imbalance between the rates of 332 

production and release of free radicals, is closely associated to several diseases including cancer, diabetes, 333 

osteoporosis, neurodegenerative and cardiovascular diseases and many other aging-associated disorders 334 

[52]. 335 

 In opposition, diet-derived antioxidants (including flavones) are regarded as potential protective 336 

agents in oxidative stress-related diseases. In fact, recent studies have demonstrated promising results 337 

regarding to the protective effects of flavonoids and/or flavones against stress-related diseases, both in 338 

vitro and in vivo models of diseases. Epidemiological studies and meta-analyses also suggest an inverse 339 

relationship between the consumption of flavonoid-rich diets and the development of distinct age-related 340 

diseases [53-55]. Still, despite these evidences, it should be remarked that the mechanisms underlying the 341 

protective effects of most flavonoids and/or flavones remain unclear and hence, there is a great demand 342 

on structure-activity studies on this area. Amongst the several oxidative-stress related disorders, the 343 

beneficial effects of flavones discussed below will be focused on the most relevant data reported on 344 

literature for flavones i.e., those correlated with neurodegenerative disorders, diabetes and its associated 345 

complications and with coronary heart diseases. 346 

 347 

 348 

3.1. Neurodegenerative disorders 349 

 The brain is responsible for 20% of the total oxygen consumption due to its high metabolic 350 

requirements. Thus, this organ is characterized by high activity of the mitochondrial electron transport 351 

chain and high ROS production ratios [56]. The combination of those factors with weak tissue 352 

regeneration makes the brain one of the most susceptible organs to the oxidative stress [16]. In cerebral 353 

pathophysiologic conditions, oxidative damage occurs in proteins, lipids, DNA and takes place in 354 

modulation of apoptosis and necrosis [13]. Moreover excitotoxicity, mitochondrial dysfunction and intra 355 

or extracellular protein aggregation also contribute for the increment of oxidative stress and neuronal 356 

deregulation and death [57]. Hence, overall, oxidative stress is considered to be the major cause of the 357 
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neuronal loss occurring in chronic neurodegenerative diseases such as Alzheimer, Parkinson and 358 

Huntington [58], as well as in acute insults (ischemic and hemorrhagic stroke). In turn, reported data 359 

suggest that flavones can exert important protective roles in several models of neurological diseases 360 

(Table 2). 361 

 Cerebral ischemia results from a transient or permanent reduction in cerebral blood flow that is 362 

restricted to the territory of a major brain artery, during which a series of phenomena such as 363 

excitotoxicity, oxidative stress, inflammation and apoptosis occur [59]. 364 

In their study, Zhao et al. [60] used the ischemic/ reperfusion (I/R) rat model to investigate the anti-365 

ischemic potential of luteolin. The intraperitoneal injection of the encapsulated flavone upon I/R, for a 366 

period of 13 days, caused a noteworthy dose-dependent prevention of the induced injuries, due to the 367 

capacity of luteolin in reducing the increasedmitochondrial ROS levels as well as enhancing the activity 368 

of GSH and CAT. 369 

Quiao and co-workers [61] additionally showed that luteolin is able to counteract diret and indirect 370 

oxidative stress events on I/R model. In more detail, the authors showed that this flavone could 371 

significantly stimulate the activity of the two antioxidant enzymes CAT and SOD-1 and overall decreased 372 

the oxidative stress marker malondialdehyde (MDA). The treatment also induced a decrease on the levels 373 

of the proapoptotic protein Bax and raised those of the anti-apoptotic protein Bcl-2. These results were 374 

reinforced by Zhang et al. [62], who reported that oral administration of luteolin (4 mg/kg) inhibited the 375 

neuronal death in a similar I/R model, suggesting that its neuroprotective action was not only due to its 376 

antioxidant properties but also to its capacity to induce nuclear factor erythroid-derived 2-like 2 (Nrf2) 377 

activity. In turn, this theory was recently supported by Xu et al. [63] who have demonstrated in traumatic 378 

brain injury cultured mice neurons that, besides restoring the levels of MDA and glutathione peroxidade 379 

(GSH-px), luteolin (at 10-50 μM ) could enhance the Nrf2 translocation to the nucleus and subsequently 380 

caused the up-regulation of its downstream products, concomitantly lowering the intracellular ROS levels 381 

and increasing neuron survival. 382 

 Luteolin derivatives, either natural or synthetic, have also been suggested as potential agents in 383 

prevention and/or treatment of diverse neurological disorders. E.g. in a Parkinson disease model, 384 

cynaroside (luteolin-7-O-β-ᴅ-glucopyranoside) (9) has been shown to efficiently scavenge ROS-related 385 

products and to increment GSH levels, as well as to reduce the activities of the pro-aptotic caspase-3 and -386 

8, thus protecting the cells from oxidative stress and promoting their viability [58]. The neuroprotective 387 

activity of this flavone on the same cellular model has been recently reaffirmed [64].  388 

 In turn, two synthetic 3-alkyl-luteolin derivatives bearing alkyl chains of 4 (10) and 6 (11) 389 

carbons (at 10-25 μM) were shown to rescue the intracellular ROS generation and caspase-3-like activity 390 

in striatal cells derived from Huntington disease knock-in mice, expressing mutant huntingtin [65].  391 

 Besides luteolin and/or luteolin derivatives, other flavones have already been tested in distinct 392 

models of neurological diseases. In hippocampal cells, the treatment with apigenin (at 5-60 μM) inhibited 393 

kainic acid-induced excitotoxicity (analogous of glutamate) in a dose-dependent manner, decreasing the 394 

intracellular ROS generation and increasing the GSH levels, hence demonstrating its neuroprotective 395 

potential [66]. Moreover, the treatment of cooper-stimulated APPsw cells (i.e., a model of Alzheimer 396 

disease manifested by an overexpression of amyloid precursor protein (APP) and a severe redox 397 
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imbalance) with apigenin (at 0.1-10 μM) resulted in a dose-dependent reduction of ROS levels and an 398 

enhancement of SOD and GSH-px activities. The authors also reported that the treatment with this 399 

flavone blocked the ROS-induced MAPK (mitogen-activated protein kinase) signaling pathways, 400 

preserved mitochondrial function and regulated apoptosis [67]. 401 

In addition, the oral administration of 10-20 mg/kg of apigenin to mice in vivo in a model of Alzheimer's 402 

disease caused the reduction of oxidized hydroethidine (a representant of superoxide anion levels on the 403 

cerebral cortex) in the brain when compared to those of untreated mice [68]. Recently, identical results 404 

were obtained by Zhao et al. [69], who additionally reported an enhanced SOD and GSH-px activities 405 

induced by apigenin, with respect to those observed in the control mice.  406 

 Scutellarein (12) and/or its derivatives, which are naturally found in Scutellaria plants, are also 407 

promising neuroprotective agents. In particular, Liu et al. [70] have shown that the treatment of H2O2-408 

induced primary cultures of rat neuronal cells with scutellarin (scutellarein-7-glucuronide) (13) for 10-409 

100 μM, caused a significant dose-dependent decrease on the MDA and NO• levels, also enhancing the 410 

cells viability with respect to controls. Further analysis lead the authors to conclude that the decrement of 411 

intracellular NO
•
 levels was resultant from the scutellarin´s capacity in inhibiting the neuronal NOS 412 

activity.  413 

 In turn, Hu et al. [71] reported that scutellarin caused up-regulation of eNOS and down-414 

regulation of iNOS, as well as of vascular endothelium growth factor and of basic fibroblast growth factor 415 

(VEGF and bFGF, respectively), overall preventing the cerebral injury caused by I/R on Sprague-Dawley 416 

rats. In addition, further research revealed that the levels of SOD, CAT and GSH were significantly 417 

increased in ischemic brain tissues of scutellarin-treated rats, enhancing the endogenous antioxidant 418 

activity. Moreover, the addition of sculletarin to an in vitro neuron culture under an oxygen and glucose 419 

deprivation treatment, inhibited the levels of ROS generation and decreased the percentage of apoptotic 420 

cells [72]. 421 

Protective effects of scutellarin have also been suggested against Alzheimer´s disease since the 422 

treatment of Aβ-treated rat brains with this flavone induced the simultaneous increase of SOD´s activity 423 

and the decrease on MAO´s (monoamine oxidase) activity. The treatment also diminished the levels of 424 

inflammatory cytokines, hence overall lowering the oxidative stress and inflammation events, and 425 

resulting in an effective amelioration of the memory and learning abilities of the rats [73]. 426 

 Despite the majority of experiments were performed with the glycosidic form of the flavone (i.e. 427 

scutellarin), it is important to highlight that the main the main in vivo metabolite of this flavone, i.e. 428 

scutellarein, has been demonstrated to exhibit stronger antioxidant capacities and to further protect PC12 429 

cells against H2O2-induced cytotoxicity than its glycoside scutellarin [74]. Similar results were obtained 430 

for the neuroprotective effects of these two flavones on a cerebral I/R model, suggesting that scutellarein 431 

is preferential for therapeutical effects [75]. 432 

Another flavone, the O-methylated flavone nobiletin (14) isolated from citrus peels, has been shown to be 433 

able to counteract oxidative stress events in H2O2-induced PC12 cells [76]. The exposure of these cells to 434 

the flavone at 3-25 μM induced a dose-dependent increase on SOD and GSH activities, the decrease of 435 

MDA levels and lipid peroxidation, together with the regulation of mitochondrial membrane potential and 436 

the inhibition of caspase-3 activity [76]. Moreover, the treatment of senescence accelerated mice 437 
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(SAMP8) with this flavone (10 - 50 mg/kg) was also able to restore the glutathione derivatives 438 

GSH/GSSG ration, increasing the GSHpx and SOD activities and reducing the phosphorylation of tau 439 

protein in the hippocampus of the mouse brain, which lead to the restoration of learning and memory 440 

deficits, typical symptoms of Alzheimer’s disease [77]. 441 

Overall, these results suggest that flavones (in particular those that are found in natural food sources) are 442 

potential candidates to be used in the intervention for neurodegenerative diseases, either in a preventive 443 

manner or as a possible therapy. 444 

 445 

Table 2. Protective effect of flavones on neurodegenerative disorders.    446 
 447 

Compound Model Test Conditions Effects Ref 

Luteolin 

I/R rat model 

5 and 20 mg/kg/day 

for 13 days, 
intraperitoneal 

injection 

↓ behavioural deficit scores; ↓ infarct volume; ↑ CAT levels; ↓ 

GSH levels; ↓ ROS production on hippocampus, frontal 

cortex and striatum 

[60] 

I/R rat model 10 and 25 mg/kg 

↓ neurological deficits score; ↓ infarct volume; ↓ Bax 

protein/mRNA levels; ↑ Bcl-2 and claudin-5 protein/mRNA 
levels; ↑ SOD-1/CAT; ↓ MDA levels 

[61] 

SH-SYS cell 

2-50 µM prior to 

treatment with 200, 
500 or 800 µM H2O2 

↑ Nrf2/HO-1 expression levels; ↓ H2O2-induced cell death; ↓ 

ROS production 
[62] 

I/R rat model 
4 mg/Kg , tail vein 

injection 
↓infarct area; ↓caspase-3 cleavage [62] 

TBI mice; 

mouse 
neurons 

10, 30 and 50 mg/kg , 

intraperitoneal 
injection 

↑ motor performance; ↓ apoptotic index; ↓ MDA levels; ↑ 
GPx expression; ↑ Nrf2 translocation to nucleus; ↑ Nrf2-

AREs binding; ↑ Nrf2 downstream proteins; ↓ intracellular 

ROS production and TBI-induced cell damage 

[63] 

Luteolin-7-O- 

[58] 

β-D- 
glucopyranoside 

PC12 cell 

25-100 µM for 6h 

prior 6-OHDA (175 

µM), H2O2 (87.5 µM) 
and 6-OHDA (175 

µM) + CAT (87.5 U) 

(p-quinone) treatment 

↓ p-quinone- and H2O2-induced cell death; ↓ ROS production; 
↓ caspase-3 and -8 levels; ↓ OH radicals; ↑ GSH levels 

[58] 

PC12 cell 
100 µM for 6h prior 
6-OHDA (175 µM) 

treatment 

↓6-OHDA-induced neurotoxicity [64] 

3-alkyl-luteolin 
STHdh7/7 and 
STHdh111/111 

cell lines 

10-25 µM ↓ intracellular ROS levels; ↓ caspase-3 activity [65] 

Apigenin 

Hippocampal 

cells 

5-60 µM 0.5-1h 

before KA (100 µM) 
↓KA-induced neurotoxicity; ↓ROS production 

[66] 

ICR mice 

25-50 mg/kg followed 

by KA (40 mg/kg), 

intraperitoneal 
injection 

↓ behaviour and electrical seizures induced by KA; ↓ GSH 
depletion on convulsive mice; ↓ KA-induced neuronal damage 

on hippocampal CA3 regions 

APPsw cells 

0.1-10 µM prior to a 

24h 200 µM Cu 
incubation 

↓ Cu-induced cell death; ↓ APP expression and Aβ1-42 

secretion; ↓ ROS generation; ↑ GSH levels; ↑ intracellular 

SOD and GPx levels; ↓ mitochondrial dysfunction; ↓ cyt c 
release; ↓ nuclear condensation; ↓ p38 MAPK-MK2-Hsp27 

and SAPK/JNK-c-Jun pathways; ↓ caspase-3 and -9 activity 

[67] 

APP/PS-1 

mice 

40 mg/kg/day for 5 

days, oral 
administration 

↓ spatial learning and memory impairment; ↓ Aβ burden by 
decreasing Aβ1-40 and Aβ1-42 insoluble forms; ↓ BACE-1 

levels; ↓ OHEt signals; ↑ SOD and GSH levels; ↑ BDNF, p-

ERK1/2 and CREB expression on cerebral cortex 

[69] 

Aβ25-35-
induced 

amnesia 

mice models 

10  and 20 mg/kg/day 

for 8 days, oral 
administration 

Ameliorates spatial learning and memory deficits; protects 

microvessels integrity and attenuate neuronal loss; ↓ OHEt 

signals on cytosol and neurovascular interface; ↑occuldin, ZO-
1 and claudin-5 levels; ↓ AChE activity; ↑ BDNF/ACh levels; 

↑TrkB and pCREB expression on cerebral cortex 

[68] 

Scutellarein 

Neuronal 

cells 

10-100 µM prior to 2 

mM H2O2 exposure 

↓ NO release; ↓ cNOS activity; ↓ MDA levels; ↓ H2O2-

induced cell death 
[70] 

I/R rat model 

25-75 mg/kg/day for 

7 days, intragastric 

injection 

↓ infarct area; ↓ neurological score; ↓ BBB permeability; ↓ 

NOx production ; ↑ eNOS expression;↓ bFGF/VEGF/iNOS 

expression 

[71] 

I/R rat model 
20-60 mg/kg, 
intraperitoneal 

injection 

↓ neurological scores; ↓ infarct area; ↑ SOD/CAT activity; ↑ 

GSH activity 
[72] 
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cortical 
neurons 

25-100 µM on a OGD 
system 

↓ LDH release; ↓ apoptotic cells; ↓ ROS generation 

Rats with 

Aβ25-35 
aggregates 

10 mg/day for 20 

days, intragastric 
injection 

Ameliorates learning and memory dysfunction associated with 

Aβ aggregates; ↑ SOD activity;↓ MAO activity; ↓ IL-1β/IL-6/ 
TNF-α; ↓ apoptotic neurons 

[73] 

PC12 cell 
line 

1-100 µM co 

incubated with 400 

µM H2O2, pre 
incubated for 30 min 

and pre incubated for 

3h before H2O2 

↓ H2O2-induced cell death [74] 

I/R rat model 
25-100 mg/kg, 

intragastic injection 
↑ neurological score; ↓ infarct area [75] 

Scutellarein 
SAMP8 

mice 

10-50 mg/kg, 
intraperitoneal 

injection 

↓ cell death; ↓ LDH leakage; ↓ MDA levels; ↑ GSH and SOD 
expression levels; ↑ mmp; ↓ ROS generation; ↓ caspase-3 

activity 

[76] 

Nobiletin 
SAMP8 

mice 

10-50 mg/kg, 

intraperitoneal 
injection 

Reversed recognition memory and context-dependent fear 

memory impairment; ↑ Mn-SOD at 50 mg/kg in striatum and 
GPx in cerebral cortex, hippocampus and striatum; ↓ the 

GSH/GSSG ratio loss in cerebral cortex, hippocampus, 

striatum and cerebellum; ↓ protein carbonyl levels in cerebral 
cortex and hippocampus; ↓ tau protein hyperphosphorylation 

[77] 

6-OHDA – 6-hydroxydopamine; ACh – acetylcholine; AChE – acetylcholinesterase; Api – apigenin;  APP – amyloid protein precursor;  APPsw – 448 
swedish mutant APP; ARE – antioxidant response element;  BACE-1 – β site APP-cleaving enzyme; BBB – blood brain barrier; BDNF – brain-derived 449 
neurotrophic factor; bFGF- basic fibroblast growth factor; CAT – catalase; cNOS – constitutive nitric oxide synthase;  CREB – cAMP response 450 
element-binding protein; eNOS – endothelial nitric oxide synthase;  ERK1/2 – extracellular signal-regulated kinase; GPx – glutathione peroxidase; 451 
GSH – reduced glutathione; Hsp27 – heat shock protein 27; I/R – ischemia/reperfusion; iNOS – inducible nitric oxide synthase; KA – kainic acid; 452 
LDH – lactate dehydrogenase; Lut – luteolin; MAO – monoamine oxidase; MAPK – mitogen activated protein kinase; MDA – malondialdehyde;  453 
MK2 – MAPKAP kinase 2; mmp – mitochondrial membrane potential; Nar – naringin; Nob – nobiletin; Nrf2 – nuclear factor erythroid 2-related factor 454 
2; OHEt – oxidized hydroethidine; PC12 – rat pheochromocytoma cell line; PS-1 – presenilin-1; ROS – reactive oxygen species; SAMP-8 – 455 
senescence-accelerated mouse prone 8; Scut – scutelarin; SH-SYS – human derived neuroblastoma cells; SOD – superoxide dismutase; STHdh7/7/111/111 456 
– striatal cells expressing normal huntingtin/mutant huntingtin; TBI – traumatic brain injury; TrkB – tropomyosin related kinase B;  VEGF – vascular 457 
endothelial growth factor; ZO-1 – zona occuldens protein-1 458 

 459 

3.2. Diabetes and associated complications 460 

Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays 461 

a major role in the pathogenesis of both types of diabetes mellitus. Free radicals are formed 462 

disproportionately in diabetes due to glucose oxidation, non-enzymatic glycosylation of proteins and the 463 

subsequent oxidative degradation of glycated proteins. The abnormal high levels of free radicals and the 464 

simultaneous decline of antioxidant defense mechanisms can result in the damage of cellular organelles 465 

and enzymes, increased lipid peroxidation and development of insulin resistance. These consequences of 466 

oxidative stress promote the development of other diabetes-associated complications [78]. 467 

Table 3 resumes relevant reported data for the protective effects of flavones on diabetes and diabetes-468 

associated diseases. 469 

Pancreatic β-cells are known to be particularly sensitive to oxidative stress, a fact that may 470 

contribute to the impaired β-cell function that is characteristic of diabetes. The pre-treatment of H2O2-471 

stimulated pancreatic βTC1 cells with chrysin, quercetin or catechin (all at 50 μM) has been found to 472 

significantly protect the cells against the generated oxidative stress. Interestingly, despite being the most 473 

hydrophobic of the three flavonoids and lacking the hydroxyl group on the B-ring (which increases 474 

antioxidant activity), chrysin was the compound that conferred better protection to the cells [79].  475 

 Reducing sugars (e.g. glucose and 2-deoxy-ᴅ-ribose) produce ROS through autoxidation and 476 

protein glycosylation, hence contributing for progressive β-cell failure. In this context, Suh and co-477 

workers [80] have demonstrated that apigenin conferred protection on 2-deoxy-ᴅ-ribose-induced HIT-15 478 

pancreatic cells through regulation of the mithocondrial membrane potential, as well as through 479 

decrement of intracellular ROS levels. A previous study have also demonstrated that apigenin and luteolin 480 
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could protect RINm5F rat insulinoma cells from interleukine (IL)-1β- and interferon (IFN)-γ-induced 481 

damage, since they inhibit NO
• 
production, mainly by reducing the iNOS mRNA and protein expression, 482 

apparently through the inhibition of nuclear factor-κB (NF-κB) activation [81]. 483 

More recently, some flavonoid components from extracts of Gelam honey, including luteolin and 484 

chrysin, were tested on high glucose-stimulated HIT-15 pancreatic cells. The pretreatment of cells with 485 

these flavones prior to culturing in a high glucose level medium resulted in a significant dosedependent 486 

decrease of the intracellular ROS generation, along with those of MDA and of glucose-induced lipid 487 

peroxidation, which lead to the general enhancement of the cells insulin contents and their viability [82]. 488 

As the metabolic disorder progresses, defects in glucose metabolizing machinery restrains the 489 

physiological system from correcting the imbalance in glucose levels, thus resulting in chronic 490 

hyperglycemia, which in turn is associated with long-term complications such as retinopathy, 491 

nephropathy, neuropathy, cardiomyopathy among other complications [83-84]. 492 

In a streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats, Srinivasan and Pari [84] tested 493 

the protective effect of diosmin (15) against consequent oxidative stress damage. After a period of 45 494 

days of oral administration of diosmin (100 mg/kg/day), these rats had their plasma levels of glucose 495 

decreased and those of insulin increased. Furthermore, on these same diosmin treated rats, increased 496 

activity of the antioxidant enzymes SOD, CAT, GSH-px, glutathione-S-transferase (GST) and levels of 497 

non-enzymatic antioxidants vitamin C, vitamin E and GSH were observed, along with decreased levels of 498 

lipid peroxidation markers in kidney and liver tissues. Chrysin has also been suggested to display 499 

hepatoprotective properties, since it was able to reduce the levels of MDA and lipid peroxidation in liver 500 

of alloxan-induced diabetic mice [85]. 501 

 502 

In addition, luteolin has already been shown to display positive results in protection against 503 

nephropathy (diabetesassociated kidney disorders). This flavone was introduced (200mg/kg) in the diet of 504 

Sprague-Dawley rats, after 48h of STZ-diabetes induction. The gathered data confirmed that upon 8 505 

weeks of treatment, the blood glucose levels of luteolin- treated rats was significantly reduced in 506 

comparison to that of controls. The authors also reported that levels of MDA on the kidneys of the 507 

luteolin-treated rats was signifycantly lowered, while the levels of SOD and the phosphorylation of 508 

Akt/PKB (serine/threonine-specific protein kinase) were significantly increased, evidencing the protective 509 

effects of luteolin against diabetic nephropathy [86]. 510 

Besides protection on kidneys disorders, luteolin has been suggested as a promising protective 511 

agent against diabetic-associated cardiomyopathy. Quian et al. [87] showed that the treatment of diabetic-512 

Sprague–Dawley rats with luteolin revealed a marked attenuation of the endothelium-dependent 513 

relaxation impairment, as well as the strong reversion of the increased ROS levels and OH
●–

 formation, 514 

together with decreased NO
•
 levels and NOS and SOD activities. In addition, rats fed with this flavone 515 

(200 mg/kg) before the induction of diabetes-stimulus were demonstrated to have lower levels of MDA, 516 

lactate dehydrogenase (LDH) and LDL cholesterol, and increased levels of HDL cholesterol, SOD and 517 

Akt phosphorylation, with respect to the controls [88]. 518 

Luteolin also show positive results in diabetic-associated neuropathy. According to the work of Liu et al. 519 

[83], the administration of luteolin (50-100 mg/kg) for a period of 8 weeks to Sprague-Dawley rats upon 520 
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the STZinduction of diabetes, resulted in the decrement of cerebral MDA and lipid peroxidation levels, 521 

while the levels of GSH, SOD and CAT were substantially increased, resulting in effective counteraction 522 

of the neuronal damage and cognitive dysfunction. Besides luteolin, both chrysin and diosmetin (16) have 523 

also been suggested as protective agents in diabetic neuropathy. In fact, male Wistar rats treated with 524 

chrysin after diabetes induction have improved their cognitive deficits [89]. These effects were related not 525 

only to the reduction of the MDA levels and an increase of SOD, CAT and GSH levels, thus relieving the 526 

oxidative stress, but also to the suppression of the p65 subunit of NF-κB, IL-1β an IL-6 activities, which 527 

prevented the inflammation process. In turn, diosmin has shown its potential in preventing the 528 

progression of early diabetic neuropathy in rats. Type-2 diabetes was induced on Sprague-Dawley rats 529 

and this was followed by the oral administration of diosmin (50 and 100 mg/kg/day) for 4 weeks. After 530 

treatment with the flavone, the elevated blood sugar and lipid profiles were restored, together with those 531 

of the increased levels of MDA and NO
•
, and the decreased levels of SOD and GSH. Overall, this 532 

treatment with diosmin resulted in alleviation of thermal hyperalgesia, cold allodynia and walking 533 

function of the diabetic rats [90]. 534 

Taking all this data into account, it is pertinent to say that flavones have shown promising results that 535 

could make them potentially useful for the development of future therapies to treat and/or prevent  536 

diabetes and diabetes-associated complications. 537 

 538 
Table 3. Protective effect of flavones on diabetes and diabetes-associated diseases.    539 
Compound Model Test conditions Effects Ref 

Apigenin HIT-T15 cell line 

0.01-10 µM apigenin 

for 30min prior to 
dRib 30 µM for 24h 

↑ cell survivability; ↓ apoptosis, ROS generation and loss of 

mmp; ↓ NFkB and AP-1 expression 
[80] 

Apigenin, 
Luteolin 

RINm5F 

IL-1β- and IFN-γ-

induced oxidative 

stress 

↓cytotoxicity; ↓ NO production; ↓ iNOS mRNA/protein 

levels; Inhibits NFkB binding activity and IkBα degradation 
on cytosol; ↓ p50 and p65 content on nucleus; ↑ insulin 

secretion 

[81] 

Chrysin 

HIT-T15 cell line 

50 µM + Mb 30 µM 

for 24h prior to 
GO/metMb for 20h 

↓ damage of H2O2/metMb-induced oxidative stress [79] 

STZ-induced 

diabetic rats 

30 and 100 mg/kg, 

intraperitoneal 
injection 

↓ Glucose; Alleviates diabetes-associated cognitive deficits; 

↓ MDA, p65 of NFkB, TNF-α, IL-1β and IL-6 content and 
caspase-3 activity; ↑ SOD, CAT and GSH levels 

[89] 

Alloxan-induced 
diabetic mice 

50 mg/kg, 

intraperitoneal 

injection 

↓ MDA levels [85] 

Chrysin, 

Luteolin 
HIT-T15 cell line 

20-80 µM for 24h 

prior to a 24h 

incubation with 20 
or 50 mM glucose 

Protected cells from glucose-induced damage; ↓ ROS 
generation; ↓ MDA levels; ↓ F2 isoprostane content; ↑ 

insulin content 

[82] 

Diosmin 

STZ-induced 

diabetic rats 

100 mg/kg, 

intragastric injection 

↑ Plasma insulin; ↓ plasma glucose; ↓ 

TBARS/hydroperoxides; ↑ SOD; ↑ CAT/GST; ↑ GPx; ↑ GR; 
↑ Vit. C/Vit. E/GSH; ↓ GSSG; ↑ GSH/GSSG ratio 

[84] 

STZ and high fat 

diet-induced 

diabetic rats 

50 and 100 mg/kg, 
oral administration 

↓ Glucose; ↓ TC/TG; ↑TP; ↓ thermal hyperalgesia and cold 

allodynia; ameliorates on walking function test; ↓ MDA 

levels; ↑ GSH/SOD levels; ↓ NO• generation 

[90] 

Luteolin 

STZ-induced 

diabetic rats 

200 mg/kg, 

intragastric injection 

↓ Glucose/BUN/Creatinine/TC/TG/LDL levels; ↑ HDL 

levels; ↓ 24h urea protein; ↓ TC/TG; ↓ SOD activity; ↓ MDA 

levels; ↑ HO-1 expression; ↑ Akt/Pkb phosphorylation 

[86] 

HG-mediated 
impairment of 

endothelium 

0.5-90 µM with 44 

mM glucose 

↑ Endothelium-dependent vasorelaxation; ↓ ROS; ↓ OH; ↑ 

SOD/cNOS; ↓ iNOS; ↑ NO• levels 
[87] 

STZ-induced 
diabetic rats 

10 , 50 and 100 
mg/kg/day for 8 days 

↑ Endothelium-dependent vasorelaxation 

STZ-induced 
diabetic rats 

200 mg/kg, oral 
administration 

↓ CK/LDH; ↓ TC/TG/LDL levels; ↑ HDL levels; ↓ MDA 

levels; ↑ SOD levels; ↑ HO-1 levels; ↑ Akt/Pkb levels; ↓ 

CTGF levels 

[88] 

STZ-induced 

diabetic rats 

50 and 100 mg/kg, 

oral administration 

↓Glucose; ↓ diabetes-associated cognitive decline; ↓ ChE 

activity; ↓ MDA levels; ↑ GSH levels; ↑ SOD/CAT activity 
[83] 
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AP-1 – activator protein-1; Api – apigenin; CAT – catalase; ChE – cholinesterase; Chr – chrysin; CK – creatine kinase; cNOS – constitutive nitric 540 
oxide synthase; DS – diosmin; dRiB – 2-deoxy-D-ribose; GO – glucose oxidase; GPx – glutathione peroxidase; GR – glutathione reductase; GSH – 541 
reduced glutathione; GST – glutathione-S-transferase; HDL – high density lipoprotein; HG – high glucose; HIT-T15 – insulin-secreting hamster β-542 
cells; HO-1 – hemeoxygenase-1; IFN-γ – interferon-γ; IL-1β – interleukin-1β; IL-6 – interleukin-6; iNOS – inducible nitric oxide synthase; LDH – 543 
lactate dehydrogenase; LDL – low density lipoprotein; Lut – luteolin; Mb – myoblobin; MDA – malondialdehyde; metMb – metmyoglobin; mmp – 544 
mitochondrial membrane potential; NF-kB – nuclear factor-kappa B; ROS – reactive oxygen species; RINm5F – rat insulinoma cell line; SOD – 545 
superoxide dismutase; STZ – streptozotocin; TBARS – thiobarbituric acid reactive substances; TC – total cholesterol; TG – total triacylglycerol 546 

3.3. Coronary heart diseases 547 

 Atherosclerosis (AS) i.e., the main cause of cardiovascular diseases (CVD), has also been closely 548 

associated to oxidative stress events. In fact, high levels of ROS are known to generate an increment of 549 

the oxidative stress in the vessel wall, as well as to promote the oxidation of the serum lowdensity 550 

lipoprotein (LDL) cholesterol, being the latter recognized as the major cause of AS and other 551 

cardiovascular diseases [91-92]. Elicitation of endothelial cells by the oxidized LDL (oxLDL) and other 552 

factors further stimulate the intracellular production of ROS, which in turn act as key second messengers, 553 

being responsible for initiating a series of intracellular signaling pathways [93]. In particular, the injured 554 

cells start expressing cellular adhesion molecules (CAMs) that promote the binding and recruitment of 555 

circulating leukocytes. These immune cells engulf oxLDLs and consequently form the foam cells that 556 

migrate to the intimal layer of the vessel where they further stimulate inflammatory mediators (including 557 

cytokines, chemokines and NO
•
), contributing to additional increment of the oxidative stress [94]. 558 

 Several authors have reported protective effects of flavones against coronary heart diseases 559 

(Table 4). Yi et al. [95] tested several flavonoids including flavone (17), chrysin, apigenin, luteolin, 6-560 

hydroxyflavone (18), baicalein and 7-hydroxyflavone on oxLDL-induced human umbilical vein 561 

EA.hy926 cells, in order to assess their protective potential on AS. Among the tested flavones, the authors 562 

concluded that the treatment with apigenin and luteolin (at 40 μM) promoted NO• release, suggesting a 563 

particular effect of the two flavones on the endothelial secretory function and endothelium-dependent 564 

vasorelaxation. Other positive effects of the apigenin and luteolin included the inhibition of MDA and 565 

ICAM-1 and cell viability amelioration. Further investigation performed in a similar cellular model 566 

corroborated that apigenin and luteolin (80 μM) could maintain the cell viability, as well as regulate 567 

intracellular ROS production [96]. The authors also observed that the two flavones had a notable 568 

inhibitory effect on the oxLDL-induced p38MAPK phosphorylation and NF-κB (p65) translocation to the 569 

nucleus, together with a deep reduction on the mRNA expression of several NF-κB-mediated genes, 570 

hence blocking the generation of more ROS. 571 

When the inflammatory endothelial response is settled, TNF-α, a key cytokine in inflammation is 572 

released. This cytokine has a multifunctional role via the activation of numerous intracellular signaling 573 

pathways, including MAPK and transcription of NF-κB that in turn will stimulate the production of more 574 

cytokines (including itself) and increase ROS formation, resulting in a vicious cycle [94]. In order to 575 

evaluate luteolin capacity to counteract the effects of TNF- α, Xia et al. [97] tested the human umbilical 576 

endothelium cells’ (HUVEC) response in presence/absence of the flavone. The treatment with luteolin 577 

(6.25-25 μM) was able to suppress the TNF- α -induced ROS generation, as well as the expression of the 578 

superoxide producing enzyme NADPH oxidase-4 and its subunit p22phox. The flavone also suppressed 579 

the expression of ICAM and VCAM, caspase-3 and -9, and enhanced Bcl-2, consequently ameliorating 580 
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the cells viability. Finally, the treatment with luteolin could inhibit transcriptional activity of NF-kB, and 581 

p38 and ERK 1/2 phosphorilation, overall attenuating oxidative stress and inflammatory processes. 582 

 583 

One of the main complications of atherosclerosis is the acute myocardial infarction (AMI) [98-99]. This 584 

is characterized by the interruption of blood supply (ischemia) to a part of the heart. Ischemia and ensuing 585 

oxygen shortage induce myocardium the death of heart cells, thus, reperfusion therapy must be applied as 586 

soon as possible in order to attenuate the ischemic injury [100]. Luteolin has also demonstrated potential 587 

in the prevention of ischemic-associated oxidative stress. In Sprague-Dawley rats subjected to myocardial 588 

ischemia/reperfusion, luteolin significantly reduced myocardial infarct size, as well as MDA production 589 

in the injured tissue samples. Moreover, treatment with this flavone (10 μg/kg) decreased plasma LDH 590 

and NO• levels, and also down-regulated iNOS protein and mRNA expressions [101]. 591 

 592 

 More recently, diosmin cardioprotective effects have been shown by Senthamizhselvan et al. 593 

[102], who observed significant decrease of LDH and creatine kinase (CK)-MB activities, along with 594 

increased levels of glutathione and antioxidant enzymes SOD, CAT and GSH-px activities on 595 

Langendorff-I/R rats. Moreover, lipid peroxidation and in vitro O2•- and OH• generation were reversed by 596 

diosmin. 597 

Despite the few studies demonstrating the effects of flavones on the ischemic-associated 598 

oxidative stress, many others have been performed reporting the efficacy of several flavones (including 599 

apigenin, scutellarin, chrysin among others) in the protection of myocardial I/R injuries through 600 

interaction with other signaling pathways such as PI3K/Akt, MAPK and apoptotic cascade pathways, and 601 

NF-kB activation [103-107]. 602 

  603 

 604 
Table 4. Protective effect of flavones on coronary heart diseases.    605 
Compound Model Test conditions Effects Ref 

Apigenin, 
Luteolin 

EA.hy926 

40 µM for 2h 
prior to a 24h 

incubation with 

100 µg/mL 
oxLDL 

↑ Cell viability; ↓ MDA levels; ↑ NO• release; ↓ ICAM-1 [95] 

Diosmin I/R rat 

50 and 100 mg/kg 

for 30 min prior to 

I/R, oral 
administration 

↑ rate pressure product; ↓ LDH release; ↓ CK-MB expression; ↑ 

SOD/CAT/GPx activity; ↑ GSH levels; ↓ TBARS/LOOH levels; ↑ 

mitICDH/mitMDH activity; ↑ mit α-KGDH activity; ↑ mitSDH 
activity; ↑ ATP level; ↓ Bcl-2 downregulation 

[102] 

Luteolin, 

Apigenin 
EA.hy926 

40 µM for 2h 

prior to 24h 
incubation with 

100 µg/mL 

oxLDL 

Inhibited oxLDL-induced cytotoxicity; ↓ ROS generation; ↓ O2˙
- 

generation; ↓ p38MAPK phosphorylation; ↓ NF-kB translocation 
to nucleus; ↓ NF-kB-mediated transcriptional activity; ↓ NF-kB-

mediated gene expression activity of ICAM-1, VCAM-1, E-

selectin, MMP-1/-2/-9 

[96] 

Luteolin 

HUVECS 

6.25, 12.5, 25 µM 

for 12h prior to 

24h with TNF-α 

50 ng/mL 

↓ LDH release; ↑ SOD activity; ↑ GSH activity; ↓ ROS 

generation; ↓ Nox-4 and p22phox mRNA/protein expression, 

caspase-3/-9, ICAM-1, VCAM-1 expression, nuclear p65 levels 

and p65, p38 and ERK1/2 phosphorylation; ↑ Bcl-2 expression 

and IkB-α cytosolic levels 

 

[97] 

Myocardial I/R 

rat 

0.01-10 µg/kg 
prior to ischemia 

0.01-1 µg/kg prior 

to reperfusion, 
jugular vein 

injection 

↓ Ischemia- and reperfusion-induced arrhythmias; ↓ LDH 
expression and NOx release; ↓ myocardial infarct area; ↓ iNOS 

mRNA/protein expression; ↓ MDA levels 

[101] 

I/R rat 
40 µmol/L for 30 
min before I/R, 

Ameliorates I/R-induced impairment of hemodynamic parameters; 
↓ infarct area; ↓ LDH release 

[103] 
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perfusion 

Cardiomyocytes 

in simulated I/R 
2, 4, 8, 16 µmol/L 

↑ shortening amplitude; ↑ Bcl-2 expression; ↓ Bax expression; ↓ 

apoptotic cells; ↑ total Akt, PLB expression levels; ↑ p-Akt/p-

PLB/SERCA2a expression 

Cardiomyocytes 

in simulated I/R 

0.5, 1.5, 2.5, 5.0 

µg/mL 

↓ necrotic cells; ↓ LDH release; ↑ shortening amplitude; ↓ 
apoptotic cells; ↓ caspase-3/Bax expression; ↑ Bcl-2 expression; 

ameliorated cardiac systolic/diastolic function and heart rate 

[106] 

I/R on STZ-

induced 

diabetic rats 

10 µg/kg for 30 

min prior to I/R, 

tail vein injection 

↓ LDH release; ↓ Arrhythmic events; ↓ Infarct area; ↑ 
hemodynamic parameters on left ventricle; ↓ apoptotic cells; ↓ 

caspase-3; ↑ FGRF2, LIF, Bcl-2 expression and Akt and BAD 

phosphorylation; ↓ Bax expressin; ↓ MPO activity; ↓ IL-6/IL-
1α/TNF-α levels 

[104] 

I/R rat model 40 µmol/L 
↓ hemodynamic parameters impairment; ↓ infarct area; LDH 

release; ↓ apoptotic cells 

[107] 
Cardiomyocytes 

in simulated I/R 
2, 4, 8, 16 µmol/L 

↓ necrotic cells; ↓ LDH release; ↑ shortening amplitude; ↑ p-
ERK1/2, Bcl-2, SERCA2a and p-PLB levels; ↓ p-JNK, Bax and p-

PP1 levels 
6-OHFlav – 6-hydroxyflavone; 7-OHFlav – 7-hydroxyflavone; Akt – protein kinase B; Api – apigenin; BAD – Bcl2-associated death promoter; Baic – 606 
baicalein; CAT – catalase; Chr – chrysin; CK-MB – creatine kinase-MB; DS – Diosmin; EA.hy926 – human umbilical vein cell line; ERK1/2 – 607 
extracellular signal-regulated kinase; FGFR2 – fibroblast growth factor receptor 2; Flav – flavone; GPx – glutathione peroxidase; GSH – reduced 608 
glutathione; HUVECS - Human Umbilical Vein Endothelial Cells; I/R – ischemia/reperfusion; ICAM-1 – intracellular adhesion molecule-1; IL-6/-1α – 609 
interleukin-6/-1α; JNK – c-Jun N-terminal kinase; LDH – lactacte dehydrogenase; LIF – leukemia inhibitory factor; LOOH – peroxide; Lut – luteolin; 610 
MAPK – mitogen-activated protein kinase; MDA – malondialdehyde; mitICDG – mitochondrial isocitrate dehydrogenase; mitMDH – mitochondrial 611 
malate dehydrogenase; mitSDH – mitochondrial succinate dehydrogenase; mitαKGDH – mitochondrial α-ketoglutarate dehydrogenase; MMP-1/-2/-9 – 612 
matrix metalloproteinase-1/-2/-9; MPO – myeloperoxidase; NF-kb – nuclear factor-kappa B; Nox4 – NADPH oxidase-4: oxLDL – oxidized low 613 
density lipoprotein; P22phox - human neutrophil cytochrome b light chain, NAD(P)H oxidase essential component 614 
 615 

4. CONCLUSION 616 

Flavones are phenyl substituted chromones characterized by the presence of a double bond 617 

between 2 and 3 position in the heterocyclic C-ring and the lacking of oxygenation at the 3-position of the 618 

same ring. These compounds have been the focus of attention of much research, due to their potential 619 

health benefits. Particular emphasis has been given to their antioxidant capacities, which can occur 620 

through direct and/ or indirect ways. 621 

Chronic and acute neurological insults, diabetes and atherosclerosis are pathological disorders 622 

closely associated with oxidative stress. Indeed, promising results regarding to the protective effects of 623 

some flavones have been demonstrated in in vitro and in vivo models of such diseases. However, further 624 

research needs to be done in order to better comprehend the mechanisms underlying these protective 625 

effects. Still, the introduction of flavonoids and/or flavones rich foods in our diet, can be the first step to 626 

prevent of the development oxidative stress diseases. 627 
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