379 research outputs found
Parameter estimation for an electric arc furnace model using maximum likelihood
Este documento presenta una metodología para determinar los parámetros de un modelo de un horno de arco eléctrico usando máxima verosimilitud (máximum likelihood estimation - MLE). La estimación por máxima verosimilitud es uno de los métodos de estimación de parámetros clásica más empleada en la práctica. El modelo de horno de arco utilizado considera las variaciones aperiódicas y la no linealidad en su característica voltaje-corriente. Se ha utilizado el toolbox NETLAB desarrollado para MATLAB®, para solucionar el sistema de ecuaciones no lineales que relacionan los parámetros del modelo que se requieren estimar. Los resultados obtenidos en simulación del modelo del horno de arco implementado en PSCADTM, se comparan con mediciones reales tomadas en la etapa más crítica de la operación del horno. Se muestra como el modelo del horno de arco captura con gran detalle las formas de onda de voltajes y corrientes reales de los arcos eléctricos generados al interior del horno. Los resultados obtenidos muestran un error máximo de 5,03 % en las corrientes eficaces del arco eléctrico y 11,4 % en los voltajes eficaces de fase del secundario del transformador que energiza los electrodos del horno.In this paper, we present a methodology for estimating the parameters of a model for an electrical arc furnace, by using maximum likelihood estimation. Maximum likelihood estimation is one of the most employed methods for parameter estimation in practical settings. The model for the electrical arc furnace that we consider, takes into account the non-periodic and non-linear variations in the voltage-current characteristic. We use NETLAB, an open source MATLAB® toolbox, for solving a set of non-linear algebraic equations that relate all the parameters to be estimated. Results obtained through simulation of the model in PSCADTM, are contrasted against real measurements taken during the furnance's most critical operating point. We show how the model for the electrical arc furnace, with appropriate parameter tuning, captures with great detail the real voltage and current waveforms generated by the system. Results obtained show a maximum error of 5% for the current's root mean square error
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: The ZIKAlliance consortium
Background: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. Methods: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmissio
Studies of and production in and Pb collisions
The production of and mesons is studied in proton-proton and
proton-lead collisions collected with the LHCb detector. Proton-proton
collisions are studied at center-of-mass energies of and ,
and proton-lead collisions are studied at a center-of-mass energy per nucleon
of . The studies are performed in center-of-mass rapidity
regions (forward rapidity) and
(backward rapidity) defined relative to the proton beam direction. The
and production cross sections are measured differentially as a function
of transverse momentum for and , respectively. The differential cross sections are used to
calculate nuclear modification factors. The nuclear modification factors for
and mesons agree at both forward and backward rapidity, showing
no significant evidence of mass dependence. The differential cross sections of
mesons are also used to calculate cross section ratios,
which show evidence of a deviation from the world average. These studies offer
new constraints on mass-dependent nuclear effects in heavy-ion collisions, as
well as and meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb
public pages
Fraction of decays in prompt production measured in pPb collisions at TeV
The fraction of and decays in the prompt
yield, , is measured by
the LHCb detector in pPb collisions at TeV. The study
covers the forward () and backward () rapidity
regions, where is the rapidity in the nucleon-nucleon
center-of-mass system. Forward and backward rapidity samples correspond to
integrated luminosities of 13.6 0.3 nb and 20.8 0.5
nb, respectively. The result is presented as a function of the
transverse momentum in the range 1 GeV/.
The fraction at forward rapidity is compatible with the LHCb
measurement performed in collisions at TeV, whereas the
result at backward rapidity is 2.4 larger than in the forward region
for GeV/. The increase of at low at backward rapidity is compatible with the suppression of the
(2S) contribution to the prompt yield. The lack of in-medium
dissociation of states observed in this study sets an upper limit of
180 MeV on the free energy available in these pPb collisions to dissociate or
inhibit charmonium state formation.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-028.html (LHCb
public pages
Measurement of boson production cross-section in collisions at TeV
The first measurement of the boson production cross-section at
centre-of-mass energy TeV in the forward region is reported,
using collision data collected by the LHCb experiment in year 2017,
corresponding to an integrated luminosity of . The
production cross-section is measured for final-state muons in the
pseudorapidity range . The integrated cross-section is determined to be for the di-muon invariant
mass in the range . This result and the
differential cross-section results are in good agreement with theoretical
predictions at next-to-next-to-leading order in the strong coupling.
Based on a previous LHCb measurement of the boson production
cross-section in Pb collisions at TeV, the nuclear
modification factor is measured for the first time at this
energy. The measured values are in the forward region () and
in the backward region
(), where represents the muon rapidity in
the centre-of-mass frame.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-010.html (LHCb
public pages
Enhanced production of baryons in high-multiplicity collisions at TeV
The production rate of baryons relative to mesons
in collisions at a center-of-mass energy TeV is measured
by the LHCb experiment. The ratio of to production
cross-sections shows a significant dependence on both the transverse momentum
and the measured charged-particle multiplicity. At low multiplicity, the ratio
measured at LHCb is consistent with the value measured in
collisions, and increases by a factor of with increasing multiplicity.
At relatively low transverse momentum, the ratio of to
cross-sections is higher than what is measured in
collisions, but converges with the ratio as the momentum
increases. These results imply that the evolution of heavy quarks into
final-state hadrons is influenced by the density of the hadronic environment
produced in the collision. Comparisons with a statistical hadronization model
and implications for the mechanisms enforcing quark confinement are discussed.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-027.html (LHCb
public pages
Observation of the decays
This paper reports the observation of the decays using proton-proton collision data collected by the
LHCb experiment, corresponding to an integrated luminosity of
. The branching fractions of these decays are measured
relative to the normalisation channel .
The meson is reconstructed in the
decay channel and the products of branching
fractions are measured to be The first uncertainty is
statistical, the second systematic, and the third arises from the uncertainty
of the branching fraction of the
normalisation channel. The last uncertainty in the result is due to
the limited knowledge of the fragmentation fraction ratio, . The
significance for the and signals is larger than
. The ratio of the helicity amplitudes which governs the angular
distribution of the decay
is determined from the data. The ratio of the - and -wave amplitudes is
found to be and its phase rad,
where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-014.html (LHCb
public pages
- …