27 research outputs found
Ultrasound Methods for Biodiesel Production and Analysis
Ultrasonic techniques have been widely used in biodiesel production, since the acoustic cavitation is a phenomenon capable of accelerating potentially the transesterification reactions. The equipment employed in such approach was simply equipment available in any regular laboratory of chemistry. Further developments introduced the ultrasound as an important tool to produce biodiesel. The main advantage is increasing the conversion of esters at reduced reaction times, with significantly lower production costs. As a method for characterization and analysis of materials, ultrasound has been used since several decades ago. However, ultrasonic analytical methods based on metrological principles are fairly recent investigated. Using ultrasound as physical principle to interrogate biodiesel is a promising field of research, with some remarkable outcomes produced so far. The aim of this chapter is to demonstrate advances of using ultrasonic techniques in production and characterization of biodiesel, as well as an appraisal of the current technology status, and provide insights into future developments
Ultrasound as a Metrological Tool for Monitoring Transesterification Kinetics
Ultrasound has been widely used as a technological alternative way to analyse non-invasively an assortment of materials. It includes liquids with dissimilar physical characteristics, including mono- and multi-phasic mixtures, suspension formation and dissolution, in-line processing, among other practical applications. Regardless the huge spread of uses, so far ultrasound has not been proved to be able to quantify transesterification kinetics with a metrological approach. The aim of this chapter is to demonstrate that a properly designed ultrasonic experiment can be developed to identify remarkable stages of a transesterification reaction to produce biodiesel. The method was compared both with gas chromatography and hydrogen nuclear magnetic resonance (1H NMR). For an in-line application, ultrasound has been proved to work properly as a monitoring tool for chemical reaction kinetics
Immunostaining with D2–40 improves evaluation of lymphovascular invasion, but may not predict sentinel lymph node status in early breast cancer
<p>Abstract</p> <p>Background</p> <p>Sentinel lymph node (SLN) biopsy is a widely used diagnostic procedure in the management of early breast cancer. When SLN is free of metastasis, complete axillary dissection may be skipped for staging in clinically N0 patients, allowing a more conservative procedure. Histological tumor features that could reliably predict SLN status have not yet been established. Since the degree of tumor lymphangiogenesis and vascularization may theoretically be related to the risk of lymph node metastasis, we sought to evaluate the relationship between lymph vessel invasion (LVI), lymphatic microvascular density (LVD), microvascular density (MVD) and VEGF-A expression, with SLN status and other known adverse clinical risk factors.</p> <p>Methods</p> <p>Protein expression of D2–40, CD34, and VEGF-A was assessed by immunohistochemistry on paraffin-embedded sections of primary breast cancer specimens from 92 patients submitted to SLN investigation. The presence of LVI, the highest number of micro vessels stained for D2–40 and CD34, and the protein expression of VEGF-A were compared to SLN status, clinicopathological features and risk groups.</p> <p>Results</p> <p>LVI was detected in higher ratios by immunostaining with D2–40 (p < 0.0001), what would have changed the risk category from low to intermediate in four cases (4.3%). There was no association between LVI and other angiogenic parameters determined by immunohistochemistry with SLN macrometastases, clinical features or risk categories.</p> <p>Conclusion</p> <p>Assessment of LVI in breast carcinoma may be significantly increased by immunostaining with D2–40, but the clinical relevance of altering the risk category using this parameter may not be advocated according to our results, neither can the use of LVI and LVD as predictors of SLN macrometastasis in early breast cancer.</p
Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi
This article is the ninth in the series of Fungal Diversity Notes, where 107 taxa distributed in three phyla, nine classes, 31 orders and 57 families are described and illustrated. Taxa described in the present study include 12 new genera, 74 new species, three new combinations, two reference specimens, a re-circumscription of the epitype, and 15 records of sexualasexual morph connections, new hosts and new geographical distributions. Twelve new genera comprise Brunneofusispora, Brunneomurispora, Liua, Lonicericola, Neoeutypella, Paratrimmatostroma, Parazalerion, Proliferophorum, Pseudoastrosphaeriellopsis, Septomelanconiella, Velebitea and Vicosamyces. Seventy-four new species are Agaricus memnonius, A. langensis, Aleurodiscus patagonicus, Amanita flavoalba, A. subtropicana, Amphisphaeria mangrovei, Baorangia major, Bartalinia kunmingensis, Brunneofusispora sinensis, Brunneomurispora lonicerae, Capronia camelliaeyunnanensis, Clavulina thindii, Coniochaeta simbalensis, Conlarium thailandense, Coprinus trigonosporus, Liua muriformis, Cyphellophora filicis, Cytospora ulmicola, Dacrymyces invisibilis, Dictyocheirospora metroxylonis, Distoseptispora thysanolaenae, Emericellopsis koreana, Galiicola baoshanensis, Hygrocybe lucida, Hypoxylon teeravasati, Hyweljonesia indica, Keissleriella caraganae, Lactarius olivaceopallidus, Lactifluus midnapurensis, Lembosia brigadeirensis, Leptosphaeria urticae, Lonicericola hyaloseptispora, Lophiotrema mucilaginosis, Marasmiellus bicoloripes, Marasmius indojasminodorus, Micropeltis phetchaburiensis, Mucor orantomantidis, Murilentithecium lonicerae, Neobambusicola brunnea, Neoeutypella baoshanensis, Neoroussoella heveae, Neosetophoma lonicerae, Ophiobolus malleolus, Parabambusicola thysanolaenae, Paratrimmatostroma kunmingensis, Parazalerion indica, Penicillium dokdoense, Peroneutypa mangrovei, Phaeosphaeria cycadis, Phanerochaete australosanguinea, Plectosphaerella kunmingensis, Plenodomus artemisiae, P. lijiangensis, Proliferophorum thailandicum, Pseudoastrosphaeriellopsis kaveriana, Pseudohelicomyces menglunicus, Pseudoplagiostoma mangiferae, Robillarda mangiferae, Roussoella elaeicola, Russula choptae, R. uttarakhandia, Septomelanconiella thailandica, Spencermartinsia acericola, Sphaerellopsis isthmospora, Thozetella lithocarpi, Trechispora echinospora, Tremellochaete atlantica, Trichoderma koreanum, T. pinicola, T. rugulosum, Velebitea chrysotexta, Vicosamyces venturisporus, Wojnowiciella kunmingensis and Zopfiella indica. Three new combinations are Baorangia rufomaculata, Lanmaoa pallidorosea and Wojnowiciella rosicola. The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated. The epitype of Sarcopeziza sicula is re-circumscribed based on cyto- and histochemical analyses. The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time. In addition, the new host records and country records are Amanita altipes, A. melleialba, Amarenomyces dactylidis, Chaetosphaeria panamensis, Coniella vitis, Coprinopsis kubickae, Dothiorella sarmentorum, Leptobacillium leptobactrum var. calidus, Muyocopron lithocarpi, Neoroussoella solani, Periconia cortaderiae, Phragmocamarosporium hederae, Sphaerellopsis paraphysata and Sphaeropsis eucalypticola
Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
Biofuel ethanol adulteration detection using an ultrasonic measurement method
AbstractHydrous ethanol is a worldwide used biofuel. According to Brazilian regulations, the concentration of ethanol in hydrous ethanol can be accepted at a maximum concentration of 93.8% and a minimum of 92.6% by mass. The aim of this study is to identify the possible changes in hydrous ethanol fuel using ultrasonic attenuation and propagation velocity. The experiments were performed in the Laboratory of Ultrasound of the Brazilian National Institute of Metrology (Inmetro). The experiments and uncertainties in the methodology were evaluated according to the Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008. The test samples used in this study were mixtures of ethanol and water with ethanol concentrations varying from 89.84% to 93.71% by mass; and a commercial fuel ethanol bought from a local distributor. The correlation coefficient between ethanol concentrations and ultrasonic propagation velocity was 0.99 (in modulus), and the maximum combined uncertainty was 0.60ms−1. Considering attenuation, the correlation coefficient was 0.97, and the maximum combined uncertainty was 0.085dBcm−1. However, its signal is not stable resulting an unreliable parameter. Within the tested concentration range, the highest concentration that is statistically different (p<0.002, α=5%) from 92.60% is 92.25%, considering propagation velocity as parameter. To validate the methodology, a commercial ethanol fuel was tested using the proposed method as well as the gas chromatography analytical method (gold standard). Result was statistically identical for propagation velocity when compared to the gold standard
Evaluation of the influence of large temperature variations on the grey level content of B-mode images
In this work, the variation of the grey-level content of B-Mode images is assessed, when the medium is subjected to large
temperature variations. The goal is to understand how the features obtained from the grey-level pattern can be used to improve
the actual state-of-the-art methods for non-invasive temperature estimation (NITE). Herein, B-Mode images were collected from
a tissue mimic phantom heated in a water bath. Entropy was extracted from image Grey-Level Co-occurrence Matrix, and then
assessed for non-invasive temperature estimation. During the heating period, the average temperature varies from 27oC to 44oC,
and entropy values were capable of identifying variations of 2.0oC. Besides, it was possible to quantify variations in the range from normal human body temperature (37oC) to critical values, as 41oC. Results are promising and encourage us to study the
uncertainty associated to the experiment trying to improve the parameter sensibility