37 research outputs found

    Conceptualizing Cognition at Multiple Levels in Support of Training Team Cognitive Readiness

    No full text
    Many operational domains require rapid and adaptive responses from individuals, teams, and larger organizational units to address dynamic and unpredictable environmental demands. These create a number of challenges to effective performance and consequently pose many challenges to training theory. This paper presents a framework for conceptualizing these multi-level processes in the context of training theory for team cognitive readiness. We submit that the development of theory for the individual, team, and teamof- teams level, as well as for across levels, is necessary for team cognitive readiness. From this, we can better target the design and test of training methods in support of team cognitive readiness. Copyright 2012 by Human Factors and Ergonomics Society, Inc. All rights reserved

    Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis

    No full text
    Kainate-induced seizures increase hippocampal neurogenesis. Glial fibrillary acidic protein-positive astrocytes with radial processes in the dentate gyrus share many of the characteristics of radial glia and appear to act as precursor cells for adult dentate neurogenesis. Using the chemoconvulsant kainate and transgenic mice with human glial-fibrillary acidic protein (hGFAP) promoter-controlled enhanced green fluorescent protein (EGFP) expression, we examined the proliferation, morphology and electrophysiological properties of astrocytes in the neurogenic subgranular zone of the dentate gyrus in control animals and upon the induction of seizure-induced cell proliferation, three days post-kainate. EGFP-positive cells with and without radial processes could easily be distinguished. Kainate treatment caused a significant increase in the total number of proliferating EGFP-positive cells, particularly a tenfold elevation in the number of proliferating radial glia-like astrocytes, and also caused a preferential shift in the dividing cell population towards cells expressing EGFP. Immunohistochemical analysis revealed a surprisingly low proportion of cells coexpressing the astroglial marker S100? and EGFP. Kainate increased the number of EGFP-positive, S100?-positive and S100?-positive–EGFP-positive astrocytes in the subgranular zone. We also report a subset of faintly EGFP-positive cells expressing markers of early neuronal differentiation. Patch-clamp analysis revealed the presence of three functionally different populations of EGFP-positive cells in both kainate and control tissue. We conclude that there is an early increase in proliferating radial glia-like astrocytes in the dentate after kainate-induced seizures, consistent with a recruitment of precursors for seizure-induced neurogenesis
    corecore