2,954 research outputs found
Altered distribution of mucosal NK cells during HIV infection.
The human gut mucosa is a major site of human immunodeficiency virus (HIV) infection and infection-associated pathogenesis. Increasing evidence shows that natural killer (NK) cells have an important role in control of HIV infection, but the mechanism(s) by which they mediate antiviral activity in the gut is unclear. Here, we show that two distinct subsets of NK cells exist in the gut, one localized to intraepithelial spaces (intraepithelial lymphocytes, IELs) and the other to the lamina propria (LP). The frequency of both subsets of NK cells was reduced in chronic infection, whereas IEL NK cells remained stable in spontaneous controllers with protective killer immunoglobulin-like receptor/human leukocyte antigen genotypes. Both IEL and LP NK cells were significantly expanded in immunological non-responsive patients, who incompletely recovered CD4+ T cells on highly active antiretroviral therapy (HAART). These data suggest that both IEL and LP NK cells may expand in the gut in an effort to compensate for compromised CD4+ T-cell recovery, but that only IEL NK cells may be involved in providing durable control of HIV in the gut
Emerging infectious disease issues in blood safety.
Improvements in donor screening and testing and viral inactivation of plasma derivatives together have resulted in substantial declines in transfusion-transmitted infections over the last two decades. Most recently, nucleic acid testing techniques have been developed to screen blood and plasma donations for evidence of very recent viral infections that could be missed by conventional serologic tests. Nonetheless, the blood supply remains vulnerable to new and reemerging infections. In recent years, numerous infectious agents found worldwide have been identified as potential threats to the blood supply. Several newly discovered hepatitis viruses and agents of transmissible spongiform encephalopathies present unique challenges in assessing possible risks they may pose to the safety of blood and plasma products
Changes in Natural Killer Cell Activation and Function during Primary HIV-1 Infection
Background: Recent reports suggest that Natural Killer (NK) cells may modulate pathogenesis of primary HIV-1 infection. However, HIV dysregulates NK-cell responses. We dissected this bi-directional relationship to understand how HIV impacts NK-cell responses during primary HIV-1 infection. Methodology/Principal Findings: Paired samples from 41 high-risk, initially HIV-uninfected CAPRISA004 participants were analysed prior to HIV acquisition, and during viraemic primary HIV-1 infection. At the time of sampling post-infection five women were seronegative, 11 women were serodiscordant, and 25 women were seropositive by HIV-1 rapid immunoassay. Flow cytometry was used to measure NK and T-cell activation, NK-cell receptor expression, cytotoxic and cytokine-secretory functions, and trafficking marker expression (CCR7, αβ). Non-parametric statistical tests were used. Both NK cells and T-cells were significantly activated following HIV acquisition (p = 0.03 and p<0.0001, respectively), but correlation between NK-cell and T-cell activation was uncoupled following infection (pre-infection r = 0.68;p<0.0001; post-infection, during primary infection r = 0.074;p = 0.09). Nonetheless, during primary infection NK-cell and T-cell activation correlated with HIV viral load (r = 0.32'p = 0.04 and r = 0.35;p = 0.02, respectively). The frequency of Killer Immunoglobulin-like Receptor-expressing (KIR) NK cells increased following HIV acquisition (p = 0.006), and KIR NK cells were less activated than KIR NK cells amongst individuals sampled while seronegative or serodiscordant (p = 0.001;p<0.0001 respectively). During HIV-1 infection, cytotoxic NK cell responses evaluated after IL-2 stimulation alone, or after co-culture with 721 cells, were impaired (p = 0.006 and p = 0.002, respectively). However, NK-cell IFN-y secretory function was not significantly altered. The frequency of CCR7+ NK cells was elevated during primary infection, particularly at early time-points (p<0.0001). Conclusions/Significance: Analyses of immune cells before and after HIV infection revealed an increase in both NK-cell activation and KIR expression, but reduced cytotoxicity during acute infection. The increase in frequency of NK cells able to traffic to lymph nodes following HIV infection suggests that these cells may play a role in events in secondary lymphoid tissue
Macrostate Data Clustering
We develop an effective nonhierarchical data clustering method using an
analogy to the dynamic coarse graining of a stochastic system. Analyzing the
eigensystem of an interitem transition matrix identifies fuzzy clusters
corresponding to the metastable macroscopic states (macrostates) of a diffusive
system. A "minimum uncertainty criterion" determines the linear transformation
from eigenvectors to cluster-defining window functions. Eigenspectrum gap and
cluster certainty conditions identify the proper number of clusters. The
physically motivated fuzzy representation and associated uncertainty analysis
distinguishes macrostate clustering from spectral partitioning methods.
Macrostate data clustering solves a variety of test cases that challenge other
methods.Comment: keywords: cluster analysis, clustering, pattern recognition, spectral
graph theory, dynamic eigenvectors, machine learning, macrostates,
classificatio
Fidelity trade-off for finite ensembles of identically prepared qubits
We calculate the trade-off between the quality of estimating the quantum
state of an ensemble of identically prepared qubits and the minimum level of
disturbance that has to be introduced by this procedure in quantum mechanics.
The trade-off is quantified using two mean fidelities: the operation fidelity
which characterizes the average resemblance of the final qubit state to the
initial one, and the estimation fidelity describing the quality of the obtained
estimate. We analyze properties of quantum operations saturating the
achievability bound for the operation fidelity versus the estimation fidelity,
which allows us to reduce substantially the complexity of the problem of
finding the trade-off curve. The reduced optimization problem has the form of
an eigenvalue problem for a set of tridiagonal matrices, and it can be easily
solved using standard numerical tools.Comment: 26 pages, REVTeX, 2 figures. Few minor corrections, accepted for
publication in Physical Review
The Iterative Signature Algorithm for the analysis of large scale gene expression data
We present a new approach for the analysis of genome-wide expression data.
Our method is designed to overcome the limitations of traditional techniques,
when applied to large-scale data. Rather than alloting each gene to a single
cluster, we assign both genes and conditions to context-dependent and
potentially overlapping transcription modules. We provide a rigorous definition
of a transcription module as the object to be retrieved from the expression
data. An efficient algorithm, that searches for the modules encoded in the data
by iteratively refining sets of genes and conditions until they match this
definition, is established. Each iteration involves a linear map, induced by
the normalized expression matrix, followed by the application of a threshold
function. We argue that our method is in fact a generalization of Singular
Value Decomposition, which corresponds to the special case where no threshold
is applied. We show analytically that for noisy expression data our approach
leads to better classification due to the implementation of the threshold. This
result is confirmed by numerical analyses based on in-silico expression data.
We discuss briefly results obtained by applying our algorithm to expression
data from the yeast S. cerevisiae.Comment: Latex, 36 pages, 8 figure
Bostonia: The Boston University Alumni Magazine. Volume 20
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
The CD85j+ NK Cell Subset Potently Controls HIV-1 Replication in Autologous Dendritic Cells
Natural killer (NK) cells and dendritic cells (DC) are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC) modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j+ NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85j− NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j+ NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j+ NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules) preferentially expressed on HIV-1-infected MDDC
- …