2,165 research outputs found

    The physics and modes of star cluster formation: simulations

    Full text link
    We review progress in numerical simulations of star cluster formation. These simulations involve the bottom-up assembly of clusters through hierarchical mergers, which produces a fractal stellar distribution at young (~0.5 Myr) ages. The resulting clusters are predicted to be mildly aspherical and highly mass-segregated, except in the immediate aftermath of mergers. The upper initial mass function within individual clusters is generally somewhat flatter than for the aggregate population. Recent work has begun to clarify the factors that control the mean stellar mass in a star-forming cloud and also the efficiency of star formation. The former is sensitive to the thermal properties of the gas while the latter depends both on the magnetic field and the initial degree of gravitational boundedness of the natal cloud. Unmagnetized clouds that are initially bound undergo rapid collapse, which is difficult to reverse by ionization feedback or stellar winds.Comment: 21 pages, 10 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 3 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil

    In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography

    Get PDF
    Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data integration are presented

    A highly abnormal massive star mass function in the Orion Nebula cluster and the dynamical decay of trapezia systems

    Get PDF
    The ONC appears to be unusual on two grounds: The observed constellation of the OB stars of the entire Orion Nebula cluster and its Trapezium at its centre implies a time-scale problem given the age of the Trapezium, and an IMF problem for the whole OB star population in the ONC. Given the estimated crossing time of the Trapezium, it ought to have totally dynamically decayed by now. Furthermore, by combining the lower limit of the ONC mass with a standard IMF it emerges that the ONC should have formed at least about 40 stars heavier than 5 M_sun while only ten are observed. Using N-body experiments we (i) confirm the expected instability of the trapezium and (ii) show that beginning with a compact OB-star configuration of about 40 stars the number of observed OB stars after 1 Myr within 1 pc radius and a compact trapezium configuration can both be reproduced. These two empirical constraints thus support our estimate of 40 initial OB stars in the cluster. Interestingly, a more-evolved version of the ONC resembles the Upper Scorpius OB association. The N-body experiments are performed with the new C-code CATENA by integrating the equations of motion using the chain-multiple-regularisation method. In addition, we present a new numerical formulation of the initial mass function.Comment: Accepted by MNRAS, 11 pages, 5 figure

    4-H 223 Clothing : Level I

    Get PDF
    Extension Service 4-H 223: Clothing level 1; Evaluation sheet, what you do in the project, requirements, fabric, picking a pattern, body measurements, preparing the fabric for cutting, from fiber to fabrics, the sewing machine, serger machine, sewing basics, interfacing, seams, under stitching, hems, you and your appearance, clothing care, modeling tips, and how do you rate

    Top-heavy integrated galactic stellar initial mass functions (IGIMFs) in starbursts

    Full text link
    Star formation rates (SFR) larger than 1000 Msun/ yr are observed in extreme star bursts. This leads to the formation of star clusters with masses > 10^6 Msun in which crowding of the pre-stellar cores may lead to a change of the stellar initial mass function (IMF). Indeed, the large mass-to-light ratios of ultra-compact dwarf galaxies and recent results on globular clusters suggest the IMF to become top-heavy with increasing star-forming density. We explore the implications of top-heavy IMFs in these very massive and compact systems for the integrated galactic initial mass function (IGIMF), which is the galaxy-wide IMF, in dependence of the star-formation rate of galaxies. The resulting IGIMFs can have slopes, alpha_3, for stars more massive than about 1 Msun between 1.5 and the Salpeter slope of 2.3 for an embedded cluster mass function (ECMF) slope (beta) of 2.0, but only if the ECMF has no low-mass clusters in galaxies with major starbursts. Alternatively, beta would have to decrease with increasing SFR >10 Msun/ yr such that galaxies with major starbursts have a top-heavy ECMF. The resulting IGIMFs are within the range of observationally deduced IMF variations with redshift.Comment: Accepted for publication in MNRAS, reference adde

    Properties of hierarchically forming star clusters

    Full text link
    We undertake a systematic analysis of the early (< 0.5 Myr) evolution of clustering and the stellar initial mass function in turbulent fragmentation simulations. These large scale simulations for the first time offer the opportunity for a statistical analysis of IMF variations and correlations between stellar properties and cluster richness. The typical evolutionary scenario involves star formation in small-n clusters which then progressively merge; the first stars to form are seeds of massive stars and achieve a headstart in mass acquisition. These massive seeds end up in the cores of clusters and a large fraction of new stars of lower mass is formed in the outer parts of the clusters. The resulting clusters are therefore mass segregated at an age of 0.5 Myr, although the signature of mass segregation is weakened during mergers. We find that the resulting IMF has a smaller exponent (alpha=1.8-2.2) than the Salpeter value (alpha=2.35). The IMFs in subclusters are truncated at masses only somewhat larger than the most massive stars (which depends on the richness of the cluster) and an universal upper mass limit of 150 Msun is ruled out. We also find that the simulations show signs of the IGIMF effect proposed by Weidner & Kroupa, where the frequency of massive stars is suppressed in the integrated IMF compared to the IMF in individual clusters. We identify clusters through the use of a minimum spanning tree algorithm which allows easy comparison between observational survey data and the predictions of turbulent fragmentation models. In particular we present quantitative predictions regarding properties such as cluster morphology, degree of mass segregation, upper slope of the IMF and the relation between cluster richness and maximum stellar mass. [abridged]Comment: 21 Pages, 25 Figure

    Massive runaway stars in the Small Magellanic Cloud

    Full text link
    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be "alien" stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.Comment: Accepted by A&
    • …
    corecore