5 research outputs found
An internal ribosome entry site element directs the synthesis of the 80 kDa isoforms of protein 4.1R
<p>Abstract</p> <p>Background</p> <p>In red blood cells, protein 4.1 (4.1R) is an 80 kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane through its FERM domain. While the expression pattern of 4.1R in mature red cells is relatively simple, a rather complex array of 4.1R protein isoforms varying in N-terminal extensions, internal sequences and subcellular locations has been identified in nucleated cells. Among these, 135 kDa and 80 kDa isoforms have different N-terminal extensions and are expressed either from AUG1- or AUG2-containing mRNAs, respectively. These two types of mRNAs, varying solely by presence/absence of 17 nucleotides (nt) which contain the AUG1 codon, are produced by alternative splicing of the 4.1R pre-mRNA. It is unknown whether the 699 nt region comprised between AUG1 and AUG2, kept as a 5' untranslated region in AUG2-containing mRNAs, plays a role on 4.1R mRNA translation.</p> <p>Results</p> <p>By analyzing the <it>in vitro </it>expression of a panel of naturally occurring 4.1R cDNAs, we observed that all AUG1/AUG2-containing cDNAs gave rise to both long, 135 kDa, and short, 80 kDa, 4.1R isoforms. More importantly, similar results were also observed in cells transfected with this set of 4.1R cDNAs. Mutational studies indicated that the short isoforms were not proteolytic products of the long isoforms but products synthesized from AUG2. The presence of a cryptic promoter in the 4.1R cDNA sequence was also discounted. When a 583 nt sequence comprised between AUG1 and AUG2 was introduced into bicistronic vectors it directed protein expression from the second cistron. This was also the case when ribosome scanning was abolished by introduction of a stable hairpin at the 5' region of the first cistron. Deletion analysis of the 583 nt sequence indicated that nucleotides 170 to 368 are essential for expression of the second cistron. The polypyrimidine tract-binding protein bound to the 583 nt active sequence but not to an inactive 3'-fragment of 149 nucleotides.</p> <p>Conclusion</p> <p>Our study is the first demonstration of an internal ribosome entry site as a mechanism ensuring the production of 80 kDa isoforms of protein 4.1R. This mechanism might also account for the generation of 60 kDa isoforms of 4.1R from a downstream AUG3. Our results reveal an additional level of control to 4.1R gene expression pathways and will contribute to the understanding of the biology of proteins 4.1R and their homologues, comprising an ample family of proteins involved in cytoskeletal organization.</p
New Application of the Comet Assay: Chromosome–Comet Assay
The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains
Rapid rates of sperm DNA damage after activation in tench (Tinca tinca: Teleostei, Cyprinidae) measured using a sperm chromatin dispersion test
Spermatozoal haplotypic DNA is prone to damage, leading to male fertility problems. So far, the assessment of sperm DNA breakage has been challenging because protamines render the nuclear chromatin highly compacted. Here, we report the application of a new test to quantify DNA fragmentation in spermatozoa of an externally fertilizing teleost fish. The sperm chromatin dispersion (SCD) test uses a species-specific lysing solution to generate controlled protein depletion that, followed by DNA-specific fluorescent labelling, allows an easy morphological discrimination between nuclei affected by DNA damage. Using tench (Tinca tinca) as our model, we first trialled the test against established, but more technically demanding, assays employing in situ nick translation (ISNT) and the comet assay. The SCD test showed high concordance with ISNT, comet assay measures and a chromatin-swelling test, confirming the application of this straightforward SCD technique to various aspects of reproductive biology. Second, we examined between-male variation in DNA damage, and measured changes through time following spermatozoal activation. Between-male variation in the basal levels of average DNA damage ranged from 0 to 20% of sperm showing damage, and all showed increases in DNA fragmentation through time (0–60 min). The rates of DNA damage increase are the fastest so far recorded in sperm for a living organism, and may relate to the external fertilization mode. Our findings have relevance for broodstock selection and optimizing IVF protocols routinely used in modern aquaculture