12 research outputs found

    Surface engineering of ZnO nanorod for inverted organic solar cell

    Get PDF
    Crystallinity and band offset alignment of inorganic electron acceptor play a vital role in enhancing the device performance of inverted organic solar cell (IOSC). In this report, homogenous and vertically-aligned chemical treated ZnO nanorods (ZNR) were successfully grown on fluorine-doped tin oxide (FTO) substrate via a fully-solution method. It was found that the morphology of ZnO was fine-tuned from truncated surface to tubular structure under both of the anionic (KOH) and protonic (HCl) treatment. An extraordinary defect quenching phenomenon and hyperchromic energy band edge shift were observed in 0.1 M KOH-treated ZNR proven by the highest (0 0 2) peak detection and the lowest defect density. Compared with the pristine sample, the 0.1 M KOH-treated ZNR device showed a remarkable improvement in power conversion efficiency (PCE) up to 0.32%, signifying the effectiveness of anodic treatment. The robust correlation between the dependency of chemical treated ZNR and the device performance was established. This work elucidates a feasible method towards efficient IOSC devices development

    Enhanced photovoltaic performance of CdS-sensitized inverted organic solar cells prepared via a successive ionic layer adsorption and reaction method

    Get PDF
    One-dimensional ZnO nanorods (ZNRs) synthesized on fluorine-doped tin oxide (FTO) glass by hydrothermal method were modified with cadmium sulfide quantum dots (CdS QDs) as an electron transport layer (ETL) in order to enhance the photovoltaic performance of inverted organic solar cell (IOSC). In present study, CdS QDs were deposited on ZNRs using a Successive Ionic Layer Adsorption and Reaction method (SILAR) method. In typical procedures, IOSCs were fabricated by spin-coating the P3HT:PC61BM photoactive layer onto the as-prepared ZNRs/CdS QDs. The results of current-voltage (I-V) measurement under illumination shows that the FTO/ZNRs/CdS QDs/ P3HT:PC61BM/ PEDOT: PSS/Ag IOSC achieved a higher power conversion efficiency (4.06 %) in comparison to FTO/ZNRs/P3HT:PC61BM/PEDOT: PSS/Ag (3.6 %). Our findings suggest that the improved open circuit voltage (Voc) and short circuit current density (Jsc) of ZNRs/CdS QDs devices could be attributed to enhanced electron selectivity and reduced interfacial charge carrier recombination between ZNRs and P3HT:PC61BM after the deposition of CdS QDs. The CdS QDs sensitized ZNRs reported herein exhibit great potential for advanced optoelectronic application

    An Undergraduate Fuzzy Logic Control Lab Using a Line Following Robot

    No full text
    ABSTRACT: Fuzzy logic controllers have gained popularity in the past few decades with highly successful implementation in many fields. Fuzzy logic enables designers to control complex systems more effectively than traditional methods. Teaching students fuzzy logic in a laboratory can be a time-consuming and an expensive task. This paper presents a low-cost educational microcontroller-based tool for fuzzy logic controlled line following mobile robot. The robot is used in the second year of undergraduate teaching in an elective course in the department of computer engineering of the Near East University. Hardware details of the robot and the software implementing the fuzzy logic control algorithm are given in the paper

    Novel and flexible asymmetric supercapacitors based on NiCo2O4 nanosheets coated on Al and Cu tapes for wearable devices applications

    No full text
    Abstract The binary metal oxides show advantages in energy storage devices. Specifically, nickel cobaltite (NiCo2O4) materials showed promising pseudocapacitive properties, high electrical conductivity and large surface area by virtue of their effective porous structure. NiCo2O4 nanosheets were hydrothermally grown in this work over flexible tapes of Aluminum (Al) and Copper (Cu). A nanosheets structure obtained of NiCo2O4 as confirmed by SEM and AFM images. The measured thickness by 3D profilometer of NiCo2O4 nanosheets based Al framework found to be 4.3 µm compared to 8.4 µm thick of film based-Cu framework. Asymmetric supercapacitor prepared from graphite and NiCo2O4 electrodes separated by filter paper. Acidic aqueous electrolyte of H2SO4 and basic aqueous electrolyte of KOH were employed to verify the cyclic activity and electrochemical reaction of asymmetric prepared supercapacitor devices. The basic KOH electrolyte shows a high stability and better charge transfer/ionic diffusion compared to the acidic H2SO4 electrolyte in particular for NiCo2O4 film-based Cu framework. The energy density and power density values were 0.9 W h kg−1 and 66.45 W kg−1, respectively. The highest specific capacity (in F.g−1) = 10.09 coincides with NiCo2O4/Cu supercapacitor in the basic KOH electrolyte. The charge storage in the supercapacitor system of NiCo2O4 and graphite can be ascribed in the form of Faradic charge transfer and capacitive non-faradic double layer, respectively

    A novel digitonin/graphene oxide/iron oxide nanocomposite: synthesis, physiochemical characterization and antioxidant activity

    No full text
    Abstract In this work, iron oxide (Fe3O4) magnetic nanoparticles (MNPs) and graphene oxide (GO) nanosheets were prepared via the co-precipitation technique and the Modified Hummer method. Fe3O4 MNPs and GO nanosheets were combined to prepare Fe3O4/GO nanocomposite and subsequently conjugated with Digitonin (DIG) in order to obtain a dual-targeted delivery system based on DIG/Fe3O4/GO nanocomposite. SEM images reveal the presence of Fe3O4 MNPs at a scale of 100 nm, exhibiting dispersion between the GO nanosheets. Aggregation of the DIG/Fe3O4/GO nanocomposite was observed at various size scales. The XRD structural analysis confirms the crystal structure of the prepared samples. The Fe3O4 MNPs demonstrated the main XRD-diffracted peaks. Also, GO nanosheets exhibit crystalline characteristics on the (001) and (002) planes. The predominant peaks observed in the DIG/GO/Fe3O4 nanocomposite are attributed to the crystal phases of Fe3O4 MNPs. The FT-IR vibrational modes observed in the GO/DIG/Fe3O4 nanocomposite indicate the presence of crosslinking between GO nanosheet layers and the Fe3O4 MNPs. The antioxidant activity of the prepared samples was measured and the DIG/GO/Fe3O4 nanocomposite demonstrated a significantly high antioxidant activity in both 2-diphenyl-1-picrylhydrazyl (DPPH·) and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS·+) tests
    corecore