5 research outputs found

    Genetic Basis of Virulence Attenuation Revealed by Comparative Genomic Analysis of Mycobacterium tuberculosis Strain H37Ra versus H37Rv

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading infectious disease despite the availability of chemotherapy and BCG vaccine. The commonly used avirulent M. tuberculosis strain H37Ra was derived from virulent strain H37 in 1935 but the basis of virulence attenuation has remained obscure despite numerous studies. We determined the complete genomic sequence of H37Ra ATCC25177 and compared that with its virulent counterpart H37Rv and a clinical isolate CDC1551. The H37Ra genome is highly similar to that of H37Rv with respect to gene content and order but is 8,445 bp larger as a result of 53 insertions and 21 deletions in H37Ra relative to H37Rv. Variations in repetitive sequences such as IS6110 and PE/PPE/PE-PGRS family genes are responsible for most of the gross genetic changes. A total of 198 single nucleotide variations (SNVs) that are different between H37Ra and H37Rv were identified, yet 119 of them are identical between H37Ra and CDC1551 and 3 are due to H37Rv strain variation, leaving only 76 H37Ra-specific SNVs that affect only 32 genes. The biological impact of missense mutations in protein coding sequences was analyzed in silico while nucleotide variations in potential promoter regions of several important genes were verified by quantitative RT-PCR. Mutations affecting transcription factors and/or global metabolic regulations related to in vitro survival under aging stress, and mutations affecting cell envelope, primary metabolism, in vivo growth as well as variations in the PE/PPE/PE-PGRS family genes, may underlie the basis of virulence attenuation. These findings have implications not only for improved understanding of pathogenesis of M. tuberculosis but also for development of new vaccines and new therapeutic agents

    Outcomes of vedolizumab therapy in patients with immune checkpoint inhibitor–induced colitis: a multi-center study

    No full text
    Abstract Background Immune-mediated diarrhea and colitis (IMDC) can limit immune checkpoint inhibitors (ICIs) treatment, which is efficacious for advanced malignancies. Steroids and infliximab are commonly used to treat it. These agents induce systemic immunosuppression, with its associated morbidity. We assessed clinical outcomes of vedolizumab as an alternative treatment for IMDC. Methods We analyzed a retrospective case series of adults who had IMDC refractory to steroids and/or infliximab and received vedolizumab from 12/2016 through 04/2018. Results Twenty-eight patients were included. The median time from ICI therapy to IMDC onset was 10 weeks. Fifteen patients (54%) had grade 2 and 13 (46%) had grade 3 or 4 IMDC. Mucosal ulceration was present in 8 patients (29%), and nonulcerative inflammation was present in 13 (46%). All patients had features of active histologic inflammation; 14 (50%) had features of chronicity, and 10 (36%) had features of microscopic colitis concurrently. The mean duration of steroid therapy was 96 days (standard deviation 74 days). Nine patients received infliximab in addition to steroids and their IMDC was refractory to it. Among these, the duration of steroid use was 131 days compared with 85 days in patients who did not receive infliximab. Likewise, patients who failed infliximab before vedolizumab had a clinical success rate of 67% compared to 95% for patients that did not receive infliximab. The median number of vedolizumab infusions was 3 (interquartile range 1–4). The mean duration of follow-up was 15 months. Twenty-four patients (86%) achieved and sustained clinical remission. Repeat endoscopic evaluation was performed in 17 patients. Endoscopic remission was attained in 7 (54%) of the 13 patients who had abnormal endoscopic findings initially; 5/17 patients (29%) reached histologic remission as well. Conclusions Vedolizumab can be appropriate for the treatment of steroid-refractory IMDC, with favorable outcomes and a good safety profile

    Differential gene expression identifies a transcriptional regulatory network involving ER-alpha and PITX1 in invasive epithelial ovarian cancer

    No full text
    Background: The heterogeneous subtypes and stages of epithelial ovarian cancer (EOC) differ in their biological features, invasiveness, and response to chemotherapy, but the transcriptional regulators causing their differences remain nebulous. Methods: In this study, we compared high-grade serous ovarian cancers (HGSOCs) to low malignant potential or serous borderline tumors (SBTs). Our aim was to discover new regulatory factors causing distinct biological properties of HGSOCs and SBTs. Results: In a discovery dataset, we identified 11 differentially expressed genes (DEGs) between SBTs and HGSOCs. Their expression correctly classified 95% of 267 validation samples. Two of the DEGs, TMEM30B and TSPAN1, were significantly associated with worse overall survival in patients with HGSOC. We also identified 17 DEGs that distinguished stage II vs. III HGSOC. In these two DEG promoter sets, we identified significant enrichment of predicted transcription factor binding sites, including those of RARA, FOXF1, BHLHE41, and PITX1. Using published ChIP-seq data acquired from multiple non-ovarian cell types, we showed additional regulatory factors, including AP2-gamma/TFAP2C, FOXA1, and BHLHE40, bound at the majority of DEG promoters. Several of the factors are known to cooperate with and predict the presence of nuclear hormone receptor estrogen receptor alpha (ER-alpha). We experimentally confirmed ER-alpha and PITX1 presence at the DEGs by performing ChIP-seq analysis using the ovarian cancer cell line PEO4. Finally, RNA-seq analysis identified recurrent gene fusion events in our EOC tumor set. Some of these fusions were significantly associated with survival in HGSOC patients; however, the fusion genes are not regulated by the transcription factors identified for the DEGs. Conclusions: These data implicate an estrogen-responsive regulatory network in the differential gene expression between ovarian cancer subtypes and stages, which includes PITX1. Importantly, the transcription factors associated with our DEG promoters are known to form the MegaTrans complex in breast cancer. This is the first study to implicate the MegaTrans complex in contributing to the distinct biological trajectories of malignant and indolent ovarian cancer subtypes

    Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review)

    No full text
    corecore