3 research outputs found

    Is it difficult to dominate the coronal and sagittal planes in convex rod rotation technique? The effect of the ucar convex rod rotation technique

    Get PDF
    WOS: 000433244300009PubMed ID: 29899772Study Design: Prospective multicenter study. Objective: To analyze the effect of the Ucar convex rod rotation technique on coronal and sagittal correction in the treatment of Lenke type I adolescent idiopathic scoliosis. Summary of Background Data: Various common curve correction techniques were used in scoliosis. This report describes the efficacy of the global vertebral correction technique with convex rod rotation. Materials and Methods: A total of 28 consecutive patients with Lenke type I adolescent idiopathic scoliosis managed with Ucar convex rod rotation technique between October 2012 and September 2015 were included. The average patient age was 14.8 years at the time of surgery. Measurements of curve magnitude and balance were made on standing anteroposterior, and lateral radiographs were taken before surgery, postoperatively, and at the last follow-up to assess deformity correction, spinal balance, and complications related to instrumentation. Results: The average preoperative main thoracic angle was 64.8 degrees and was decreased to 15.5 degrees postoperatively. The average preoperative T4-T12 thoracic kyphosis was 19.6 degrees and was improved to 24.8 degrees. All patients had mildly imbalanced or balanced shoulders at the final follow-up. Conclusion: Correction rates in the coronal and sagittal planes were as acceptable as those achieved with conventional methods

    A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles

    Get PDF
    ower train electrification is promoted as a potential alternative to reduce carbon intensity of transportation. Lithium-ion batteries are found to be suitable for hybrid electric vehicles (HEVs) and pure electric vehicles (EVs), and temperature control on lithium batteries is vital for long-term performance and durability. Unfortunately, battery thermal management (BTM) has not been paid close attention partly due to poor understanding of battery thermal behaviour. Cell performance change dramatically with temperature, but it improves with temperature if a suitable operating temperature window is sustained. This paper provides a review on two aspects that are battery thermal model development and thermal management strategies. Thermal effects of lithium-ion batteries in terms of thermal runaway and response under cold temperatures will be studied, and heat generation methods are discussed with aim of performing accurate battery thermal analysis. In addition, current BTM strategies utilised by automotive suppliers will be reviewed to identify the imposing challenges and critical gaps between research and practice. Optimising existing BTMs and exploring new technologies to mitigate battery thermal impacts are required, and efforts in prioritising BTM should be made to improve the temperature uniformity across the battery pack, prolong battery lifespan, and enhance the safety of large packs
    corecore