7,461 research outputs found

    Моделирование безопасного поведения водителя на перекрестках с помощью глубинного обучения

    Get PDF
    Roundabouts provide safe and fast circulation as well as many environmental advantages, but drivers adopting unsafe behaviours while circulating through them may cause safety issues, provoking accidents. In this paper we propose a way of training an autonomous vehicle in order to behave in a human and safe way when entering a roundabout. By placing a number of cameras in our vehicle and processing their video feeds through a series of algorithms, including Machine Learning, we can build a representation of the state of the surrounding environment. Then, we use another set of Deep Learning algorithms to analyze the data and determine the safest way of circulating through a roundabout given the current state of the environment, including nearby vehicles with their estimated positions, speeds and accelerations. By watching multiple attempts of a human entering a roundabout with both safe and unsafe behaviours, our second set of algorithms can learn to mimic the human’s good attempts and act in the same way as him, which is key to a safe implementation of autonomous vehicles. This work details the series of steps that we took, from building the representation of our environment to acting according to it in order to attain safe entry into single lane roundabouts

    Assessing the operating temperature of multi-junction solar cells with novel rear side layer stack and local electrical contacts

    Get PDF
    Sub-bandgap sunlight provides a source of heat generation in solar cells that is detrimental to performance, especially in space applications where heat dissipation is limited. In this work we assess the impact that an advanced rear-side contact scheme for multi-junction solar cells has on the cell temperature. Our results show that this scheme reduces the optical power absorption below the bandgap of germanium by 81% compared to a standard, full metallization design. Measurements of the electrical and thermal power fluxes performed in vacuum demonstrate that this lower near-infrared light absorption results in 8% less heat dissipated in the cell with the novel rear-side contact scheme when operating at 25 ºC. Modelling of the operating temperature for both cells when fully encapsulated with glass indicates that this effect will also result in a reduction of the operating temperature of 9 ºC for the novel design

    An experimental manipulation of life-history trajectories and resistance to oxidative stress.

    Get PDF
    Optimal investment into life-history traits depends on the environmental conditions that organisms are likely to experience during their life. Evolutionary theory tells us that optimal investment in reproduction versus maintenance is likely to shape the pattern of age-associated decline in performance, also known as aging. The currency that is traded against different vital functions is, however, still debated. Here, we took advantage of a phenotypic manipulation of individual quality in early life to explore (1) long-term consequences on life-history trajectories, and (2) the possible physiological mechanism underlying the life-history adjustments. We manipulated phenotypic quality of a cohort of captive zebra finches (Taeniopygia guttata) by assigning breeding pairs to either an enlarged or a reduced brood. Nestlings raised in enlarged broods were in poorer condition than nestlings raised in reduced broods. Interestingly, the effect of environmental conditions experienced during early life extended to the age at first reproduction. Birds from enlarged broods delayed reproduction. Birds that delayed reproduction produced less offspring but lived longer, although neither fecundity nor longevity were directly affected by the experimental brood size. Using the framework of the life-table response experiment modeling, we also explored the effect of early environmental condition on population growth rate and aging. Birds raised in reduced broods tended to have a higher population growth rate, and a steeper decrease of reproductive value with age than birds reared in enlarged broods. Metabolic resources necessary to fight off the damaging effect of reactive oxygen species (ROS) could be the mechanism underlying the observed results, as (1) birds that engaged in a higher number of breeding events had a weaker red blood cell resistance to oxidative stress, (2) red blood cell resistance to oxidative stress predicted short-term mortality (but not longevity), and (3) was related with a parabolic function to age. Overall, these results highlight that early condition can have long-term effects on life-history trajectories by affecting key life-history traits such as age at first reproduction, and suggest that the trade-off between reproduction and self-maintenance might be mediated by the cumulative deleterious effect of ROS

    Visible spectroscopy of the new ESO Large Program on trans-Neptunian objects and Centaurs: final results

    Full text link
    A second large programme (LP) for the physical studies of TNOs and Centaurs, started at ESO Cerro Paranal on October 2006 to obtain high-quality data, has recently been concluded. In this paper we present the spectra of these pristine bodies obtained in the visible range during the last two semesters of the LP. We investigate the spectral behaviour of the TNOs and Centaurs observed, and we analyse the spectral slopes distribution of the full data set coming from this LP and from the literature. We computed the spectral slope for each observed object, and searched for possible weak absorption features. A statistical analysis was performed on a total sample of 73 TNOs and Centaurs to look for possible correlations between dynamical classes, orbital parameters, and spectral gradient. We obtained new spectra for 28 bodies, 15 of which were observed for the first time. All the new presented spectra are featureless, including 2003 AZ84, for which a faint and broad absorption band possibly attributed to hydrated silicates on its surface has been reported. The data confirm a wide variety of spectral behaviours, with neutral--grey to very red gradients. An analysis of the spectral slopes available from this LP and in the literature for a total sample of 73 Centaurs and TNOs shows that there is a lack of very red objects in the classical population. We present the results of the statistical analysis of the spectral slope distribution versus orbital parameters. In particular, we confirm a strong anticorrelation between spectral slope and orbital inclination for the classical population. A strong correlation is also found between the spectral slope and orbital eccentricity for resonant TNOs, with objects having higher spectral slope values with increasing eccentricity.Comment: 11 pages, 9 figure

    An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity.

    Get PDF
    Carotenoid-based sexual traits are thought to be reliable indicators of male quality because they might be scarce and therefore might indicate the ability of males to gather high-quality food and because they are involved in important physiological functions (as immune enhancers and antioxidants). We performed an experiment where male and female zebra finches (Taeniopygia guttata) were provided with increasing carotenoid doses in the drinking water during 4 weeks (bill color of this species is a carotenoid-based sexual signal). Simultaneously, birds were split into two groups: one receiving weekly injections of Escherichia coli lipopolysaccharide in order to activate the immune system, the other being injected with the same volume of phosphate buffered saline. We assessed how carotenoid availability and immune activation affected the amount of circulating plasma carotenoids, the beak color, and the antioxidant defenses (assessed as the resistance of red blood cells to a controlled free radical attack). Carotenoid availability affected the amount of circulating carotenoids and beak color; both variables reached a plateau at the highest carotenoid doses. Immune activation diverted carotenoids from plasma, and this in turn affected the expression of the sexual trait. Finally, we found a positive correlation between the change in circulating carotenoids and antioxidant defenses. These results support the idea that carotenoids have important physiological properties that ensure the honesty of carotenoid-based sexual traits

    Near-Infrared Spectroscopy of Carbon-Enhanced Metal-Poor Stars. I. A SOAR/OSIRIS Pilot Study

    Full text link
    We report on an abundance analysis for a pilot study of seven Carbon-Enhanced Metal-Poor (CEMP) stars, based on medium-resolution optical and near-infrared spectroscopy. The optical spectra are used to estimate [Fe/H], [C/Fe], [N/Fe], and [Ba/Fe] for our program stars. The near-infrared spectra, obtained during a limited early science run with the new SOAR 4.1m telescope and the Ohio State Infrared Imager and Spectrograph (OSIRIS), are used to obtain estimates of [O/Fe] and 12C/13C. The chemical abundances of CEMP stars are of importance for understanding the origin of CNO in the early Galaxy, as well as for placing constraints on the operation of the astrophysical s-process in very low-metallicity Asymptotic Giant Branch (AGB) stars. This pilot study includes a few stars with previously measured [Fe/H], [C/Fe], [N/Fe],[O/Fe], 12C/13C, and [Ba/Fe], based on high-resolution optical spectra obtained with large-aperture telescopes. Our analysis demonstrates that we are able to achieve reasonably accurate determinations of these quantities for CEMP stars from moderate-resolution optical and near-infrared spectra. This opens the pathway for the study of significantly larger samples of CEMP stars in the near future. Furthermore, the ability to measure [Ba/Fe] for (at least the cooler) CEMP stars should enable one to separate stars that are likely to be associated with s-process enhancements (the CEMP-s stars) from those that do not exhibit neutron-capture enhancements (the CEMP-no stars).Comment: 27 pages, including 5 tables, 6 figures, accepted for publication in The Astronomical Journa

    Performance modeling of the sparse matrix-vector product via convolutional neural networks

    Full text link
    [EN] Modeling the execution time of the sparse matrix-vector multiplication (SpMV) on a current CPU architecture is especially complex due to (i) irregular memory accesses; (ii) indirect memory referencing; and (iii) low arithmetic intensity. While analytical models may yield accurate estimates for the total number of cache hits/misses, they often fail to predict accurately the total execution time. In this paper, we depart from the analytic approach to instead leverage convolutional neural networks (CNNs) in order to provide an effective estimation of the performance of the SpMV operation. For this purpose, we present a high-level abstraction of the sparsity pattern of the problem matrix and propose a blockwise strategy to feed the CNN models by blocks of nonzero elements. The experimental evaluation on a representative subset of the matrices from the SuiteSparse Matrix collection demonstrates the robustness of the CNN models for predicting the SpMV performance on an Intel Haswell core. Furthermore, we show how to generalize the network models to other target architectures to estimate the performance of SpMV on an ARM A57 coreThis work was supported by project TIN2017-82972-R from the MINECO, Spain. Manuel F. Dolz was also supported by the Plan GenT project CDEIGENT/2018/014 from the Generalitat Valenciana, Spain. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume IBarreda, M.; Dolz, MF.; Castaño Alvarez, MA.; Alonso-Jordá, P.; Quintana-Orti, ES. (2020). Performance modeling of the sparse matrix-vector product via convolutional neural networks. The Journal of Supercomputing (Online). 76(11):8883-8900. https://doi.org/10.1007/s11227-020-03186-1S888389007611Abdelfattah A, Ltaief H, Keyes D (2015) High performance multi-GPU SpMV for multi-component PDE-based applications. In: Träff JL, Hunold S, Versaci F (eds) Euro-Par 2015: parallel processing. Springer, Berlin, pp 601–612Schiesser WE (2014) Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs. CRC Press, Boca RatonVuduc R, Demmel JW, Yelick KA (2005) OSKI: a library of automatically tuned sparse matrix kernels. J Phys Conf Ser 16:521–530Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J (2007) Optimization of sparse matrix–vector multiplication on emerging multicore platforms. In: SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp 1–12Elafrou A, Goumas G, Koziris N (2017) Performance analysis and optimization of sparse matrix–vector multiplication on modern multi- and many-core processors. In: 2017 46th International Conference on Parallel Processing (ICPP), pp 292–301Li S, Chang H, Zhang J, Zhang Y (2015) Automatic tuning of sparse matrix–vector multiplication on multicore clusters. Sci China Inf Sci 58(9):1–14Guo P, Wang L (2015) Accurate cross-architecture performance modeling for sparse matri–vector multiplication (SpMV) on GPUs. Concurr Comput Pract Exp 27(13):3281–3294Li K, Yang W, Li K (2015) Performance analysis and optimization for SpMV on GPU using probabilistic modeling. IEEE Trans Parallel Distrib Syst 26(1):196–205Eijkhout V, Pozo R (1994) Data structures and algorithms for distributed sparse matrix operations. Technical reportGu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recognit 77(C):354–377Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Gordon G, Dunson D, Dudík M (eds) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA, 11–13. PMLR, pp 315–323Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, Volume 37 (ICML’15). JMLR org, pp 448–456Keras: The Python Deep Learning library. https://keras.io/. Accessed Dec 2019TensorFlow, an open source machine learning library for research and production. https://www.tensorflow.org/. Accessed Dec 2019Keras + Hyperopt: a very simple wrapper for convenient hyperparameter optimization. http://maxpumperla.com/hyperas/. Accessed Dec 2019Bergstra J, Komer B, Eliasmith C, Yamins D, Cox D (2015) Hyperopt: a python library for model selection and hyperparameter optimization. Comput Sci Discov. https://doi.org/10.1088/1749-4699/8/1/014008Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on International Conference on Machine Learning—Volume 28, ICML’13. JMLR.org, pp I–115–I–123SuiteSparse Matrix Collection. https://sparse.tamu.edu/. Accessed Dec 2019Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, BerlinPan SJ, Yang Qiang (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–44 05Götz M, Anzt H (2018) Machine learning-aided numerical linear algebra: convolutional neural networks for the efficient preconditioner generation. In: Procs of ScalA’18: 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, WS at Supercomputing 2018, 11Zhao Y, Li J, Liao C, Shen X (2018) Bridging the gap between deep learning and sparse matrix format selection. SIGPLAN Not 53(1):94–108Cui H, Hirasawa S, Kobayashi H, Takizawa H (2018) A machine learning-based approach for selecting SpMV kernels and matrix storage formats. IEICE Trans Inf Syst E101.D(9):2307–2314Nisa I, Siegel C, Rajam AS, Vishnu A, Sadayappan P (2018) Effective machine learning based format selection and performance modeling for SpMV on GPUs. EasyChair Preprint no. 388, EasyChairTiwari A, Laurenzano MA, Carrington L, Snavely A (2012) Modeling power and energy usage of HPC kernels. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum, pp 990–998Benatia A, Ji W, Wang Y, Shi F (2016) Machine learning approach for the predicting performance of SpMV on GPU. In: 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), pp 894–90

    Visible and near-infrared observations of asteroid 2012 DA14 during its closest approach of February 15, 2013

    Full text link
    Near-Earth asteroid 2012 DA14 made its closest approach on February 15, 2013, when it passed at a distance of 27,700 km from the Earth's surface. It was the first time an asteroid of moderate size was predicted to approach that close to the Earth, becoming bright enough to permit a detailed study from ground-based telescopes. Asteroid 2012 DA14 was poorly characterized before its closest approach. We acquired data using several telescopes on four Spanish observatories: the 10.4m Gran Telescopio Canarias (GTC) and the 3.6m Telescopio Nazionale Galileo (TNG), both in the El Roque de los Muchachos Observatory (ORM, La Palma); the 2.2m CAHA telescope, in the Calar Alto Observatory (Almeria); the f/3 0.77m telescope in the La Hita Observatory (Toledo); and the f/8 1.5m telescope in the Sierra Nevada Observatory (OSN, Granada). We obtained visible and near-infrared color photometry, visible spectra and time-series photometry. Visible spectra together with color photometry of 2012 DA14 show that it can be classified as an L-type asteroid, a rare spectral type with a composition similar to that of carbonaceous chondrites. The time-series photometry provides a rotational period of 8.95 +- 0.08 hours after the closest approach, and there are indications that the object suffered a spin-up during this event. The large amplitude of the light curve suggests that the object is very elongated and irregular, with an equivalent diameter of around 18m. We obtain an absolute magnitude of H_R = 24.5 +- 0.2, corresponding to H_V = 25.0 +- 0.2. The GTC photometry also gives H_V = 25.29 +- 0.14. Both values agree with the value listed at the Minor Planet Center shortly after discovery. From the absolute photometry, together with some constraints on size and shape, we compute a geometric albedo of p_V = 0.44 +- 0.20, which is slightly above the range of albedos known for L-type asteroids (0.082 - 0.405).Comment: 7 pages, 4 figures, 1 table. Accepted in A&A (June 17 2013

    Thermal emissivity of silicon heterojunction solar cells

    Get PDF
    The aim of this work is to evaluate whether silicon heterojunction solar cells, lacking highly emissive, heavily doped silicon layers, could be better candidates for hybrid photovoltaic thermal collectors than standard aluminium-diffused back contact solar cells. To this end, the near and mid infrared emissivity of full silicon heterojunction solar cells, as well as of its constituent materials – crystalline silicon wafer, indium tin oxide, n-, i- and p-type amorphous silicon – have been assessed by means of ellipsometry and FTIR. The experimental results show that the thermal emissivity of these cells is actually as high as in the more traditional structures, ~80% at 8 μm. Detailed optical modelling combining raytracing and transfer matrix formalism shows that the emissivity in these cells originates in the transparent conductive oxide layers themselves, where the doping is not high enough to result in a reflection that exceeds the increased free carrier absorption. Further modelling suggests that it is possible to obtain lower emissivity solar cells, but that a careful optimization of the transparent conductive layer needs to be done to avoid hindering the photovoltaic performance
    corecore