301 research outputs found

    Microwave pretreatment for the extraction of anthocyanins from saffron flowers: Assessment of product quality

    Get PDF
    Producción CientíficaThe potential of saffron flowers as a source of polyphenols, and in particular anthocyanins, for the extraction of bioactive compounds and the production of a cyanic colorant was analyzed. A microwave pretreatment, prior to the conventional solid–liquid extraction process, was proposed as a feasible intensification step. The effectiveness of microwave pretreatment was assessed in terms of increased yield and improved quality of the final product. The operational variables studied were the pretreatment temperature (60–120 °C) and the solid–liquid ratio (0.30–0.50 g/mL). It was found that the addition of the microwave pretreatment to the conventional process allowed one to reduce extraction time by up to 12 times and to greatly improve the characteristics of the final product, using microwave energy densities as low as 0.16–0.54 kJ/mL. The extract quality was evaluated in terms of polyphenol richness (25% increase), product composition (80% of the anthocyanins was delphinidin), antioxidant capacity (boosted by the pretreatment) and color (variations in red and blue hue depending on conditions). To conclude, a microwave pretreatment in which the material is heated to a temperature of 65 °C with a solvent ratio of 0.30 g/mL was selected as the optimum to maximize process efficiency and product quality.Junta de Castilla y León - (Project VA040U16

    Asynchronous federated learning system for human-robot touch interaction

    Get PDF
    Artificial intelligence and robotics are advancing at an incredible pace; however, there is a risk associated with the data privacy and personal information of users interacting with these systems and platforms. In this context, the federated learning approach emerged to enable large-scale, distributed learning without the need to transmit or store any information necessary to train the learning models. In a previous paper, we presented a system capable of detecting, locating, and classifying what kind of contact occurs between humans and one of our robots using innovative contact microphone technology. In this work we go further, improving the previously presented touch system with a multi-user, multi-robot, distributed, and scalable learning approach that is able to learn in a collaborative and incremental way while respecting the privacy of the user's information. The system has been successfully evaluated in a real environment with 28 different users divided in 7 different groups. To assess the performance of our system with this federated learning approach, we compared it to the same distributed learning system without federated learning. That is, the control group for this comparison is a central node directly receiving all the training examples obtained by each robot locally. We found that in this context the inclusion of federated learning improves the results concerning traditional distributed learning.The research leading to these results has received funding from the projects: Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES), RTI2018-096338-B-I00, funded by the Ministerio de Ciencia, Innovación y Universidades; Robots sociales para mitigar la soledad y el aislamiento en mayores (SOROLI), PID2021-123941OA-I00, funded by Agencia Estatal de Investigación (AEI), Spanish Ministerio de Ciencia e Innovación; the project PLEC2021-007819, funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, and RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by the European Social Funds (FSE) of the EU. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022 )

    Assessing the reversed exponential decay of the electrical conductance in molecular wires: the undeniable effect of static electron correlation

    Get PDF
    An extraordinary new family of molecular junctions, inaccurately referred to as "anti-Ohmic" wires in the recent literature, has been proposed based on theoretical predictions. The unusual electron transport observed for these systems, characterized by a reversed exponential decay of their electrical conductance, might revolutionize the design of molecular electronic devices. This behavior, which has been associated with intrinsic diradical nature, is reexamined in this work. Since the diradical character arises from a near-degeneracy of the frontier orbitals, the employment of a multireference approach is mandatory. CASSCF calculations on a set of nanowires based on polycyclic aromatic hydrocarbons (PAHs) demonstrate that, in the frame of an appropriate multireference treatment, the ground state of these systems shows the expected exponential decay of the conductance. Interestingly, these calculations do evidence a reversed exponential decay of the conductance, although now in several excited states. Similar results have been obtained for other recently proposed candidates to "anti-Ohmic" wires. These findings open new horizons for possible applications in molecular electronics of these promising systems.Xunta de Galicia | Ref. GRC2019/24Agencia Estatal de Investigación | Ref. PGC2018-095953-B-I0

    MicroRNA-145 and microRNA-486 are potential serum biomarkers for vascular calcification

    Get PDF
    INTRODUCTION: MicroRNAs (miRs) regulate vascular calcification (VC), and their quantification may contribute to suspicion of the presence of VC. METHODS: The study was performed in four phases. Phase 1: miRs sequencing of rat calcified and non-calcified aortas. Phase 2: miRs with the highest rate of change, plus miR-145 [the most abundant miR in vascular smooth muscle cells (VSMCs)], were validated in aortas and serum from rats with and without VC. Phase 3: the selected miRs were analyzed in epigastric arteries from kidney donors and recipients, and serum samples from general population. Phase 4: VSMCs were exposed to different phosphorus concentrations, and miR-145 and miR-486 were overexpressed to investigate their role in VC. RESULTS: miR-145, miR-122-5p, miR-486 and miR-598-3p decreased in the rat calcified aortas, but only miR-145 and miR-486 were detected in serum. In human epigastric arteries, miR-145 and miR-486 were lower in kidney transplant recipients compared with donors. Both miRs inversely correlated with arterial calcium content and with VC (Kauppila index). In the general population, the severe VC was associated with the lowest serum levels of both miRs. The receiver operating characteristic curve showed that serum miR-145 was a good biomarker of VC. In VSMCs exposed to high phosphorus, calcium content, osteogenic markers (Runx2 and Osterix) increased, and the contractile marker (α-actin), miR-145 and miR-486 decreased. Overexpression of miR-145, and to a lesser extent miR-486, prevented the increase in calcium content induced by high phosphorus, the osteogenic differentiation and the loss of the contractile phenotype. CONCLUSION: miR-145 and miR-486 regulate the osteogenic differentiation of VSMCs, and their quantification in serum could serve as a marker of VC

    Fibrosis in chronic kidney disease: Pathogenesis and consequences

    Full text link
    Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD

    Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications

    Get PDF
    An elastin-like recombinamer (ELR) containing the RGD cell adhesion domain was used to fabricate microparticles by an innovative and affordable process based on the use of superhydrophobic surfaces. Two microparticles types with different crosslinking extents were prepared. The biological response was tested using an osteoblast-like cell line (SaOs-2) performing proliferation and alkaline phosphatase (ALP) quantification tests, as well as assessing cytotoxicity, morphology and cell distribution on the particles. The main goal of the work was the assessment of the in vitro formation of cell-induced microparticle aggregates that could provide indications for the possible formation of an in situ-forming scaffold upon implantation. ELR microparticles have been successfully obtained by deposition of a polymeric solution on bioinspired polystyrene superhydrophobic surfaces and two different crosslinking extents were achieved by controlling the time of exposure to the crosslinker. The crosslinking extent affected swelling behavior and the dynamic mechanical properties of the particles. SaOs-2 morphology, ALP expression, spatial distribution and ability to bind the microparticles together were dependent on the physicochemical properties of the microparticles: the more crosslinked condition was the most favorable for cell proliferation and to form a cell-induced aggregation scaffold, making these particles suitable to be applied in bone tissue engineering

    Synergies between Geomatics and Health Sciences for the creation of new virtual materials for teaching podiatry

    Get PDF
    [EN] Thermography as a methodology for quantitative analysis is not usually addressed in the degrees of the university programs of the Health Sciences branch, with the consequent deficiencies in technological tools in the training of future graduates. Therefore, this manuscript proposes a novel approach for the acquisition of advanced skills in the Health Sciences degree of podiatry, through the application of techniques and tools from Geomatics engineering and based on free/open-source software solutions. This strategy uses 3D visualization techniques on thermographic images to improve the interpretation and understanding of thermographic images related to the physiological and pathological analysis of the lower extremity. The specific workflow for the generation of didactic material related to this objective is proposed for asynchronous and e-learning programs, so that these virtual materials can be easily deployed on the institutional based-on Moodle platform, allowing students to enrich the learning. The application of Geomatics advances in the Health Sciences branch will improve students' critical thinking, so they will be better prepared to face future challenges in the labor marketSIThis work has been supported by the 2021 Educational Innovation Program of the Universidad de León (PAID – Plan de Apoyo a la Innovación Docente
    corecore