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A B S T R A C T

Artificial intelligence and robotics are advancing at an incredible pace; however, there is a risk associated
with the data privacy and personal information of users interacting with these systems and platforms. In
this context, the federated learning approach emerged to enable large-scale, distributed learning without
the need to transmit or store any information necessary to train the learning models. In a previous paper,
we presented a system capable of detecting, locating, and classifying what kind of contact occurs between
humans and one of our robots using innovative contact microphone technology. In this work we go further,
improving the previously presented touch system with a multi-user, multi-robot, distributed, and scalable
learning approach that is able to learn in a collaborative and incremental way while respecting the privacy of
the user’s information.

The system has been successfully evaluated in a real environment with 28 different users divided in 7
different groups. To assess the performance of our system with this federated learning approach, we compared
it to the same distributed learning system without federated learning. That is, the control group for this
comparison is a central node directly receiving all the training examples obtained by each robot locally.
We found that in this context the inclusion of federated learning improves the results concerning traditional
distributed learning.
1. Introduction

Following the methodology described by Simon Sinek in his famous
book ‘Start with Why’ (Sinek, 2009), we will start this introduction
by talking about the ‘why’ of this work; then, we will talk about
‘how’ we have carried it out, and finally we will talk about ‘what’ we
have actually implemented and developed. We consider this approach
to be advantageous because it progressively puts the work we have
developed in context for the reader and presents it in an accessible way.

1.1. Why?

A social robot is a particular type of robot that is intended to be
interacted with as naturally as possible, as if the robot were another
human. They commonly have the dual goal of entertaining and assisting
humans in quotidian tasks (Hegel et al., 2009). The range of possible
tasks that social robots are being made to perform is very broad (Hegel
et al., 2007), although, to date, no truly successful application has been
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developed that has driven the sale of social robots on a global and
massive scale, which has happened for other popular technologies such
as smartphones and televisions.12 (Bogue, 2017)

For a social robot to be helpful and interacted with as if it were
another human being, essential advances are needed in many fields
related to the capabilities of human beings: vision, hearing, touch,
smell, taste, proprioception, emotional management, etc. In recent
decades, there have been significant advances in the fields of artificial
vision (sense of sight) and natural language processing (NLP) (sense of
hearing); however, there has not been significant progress concerning
the senses of touch or smell (Sabanovic et al., 2006; Veling & McGinn,
2021). Taking advantage of this less developed field of research – which
also has greater possibilities for innovation within the field of social
robotics – we have focused our latest research on improving tactile
interaction between humans and social robots.

In an initial paper (Alonso-Martín, Castillo et al., 2017; Alonso-
Martín, Gamboa-Montero et al., 2017), we presented a new approach
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related to the sense of touch in social robotics. This new approach
proposes using microphones, specifically, a particular type of piezo-
electric or contact microphone, coupled with the analysis of the sound
produced in each physical contact to endow robots with a sense of
touch. This system can determine when a human touches one of our
robots and what type of contact was produced from a set of four
possible types of contact: stroke, tap, slap, and tickle. This approach,
hich made use of machine learning techniques, allowed, at a meagre
conomical cost, our robots to have a more advanced sense of touch;
t is simpler and cheaper to implement than most techniques used to
ate.
In a later paper (Gamboa-Montero et al., 2020), we extended this

pproach by giving it the ability to detect, using audio and machine
earning techniques, the area of the robot where physical contact had
ccurred. We tested this new system with several types of social robots
nd made it work in real interactions (the system was running in real
ime). However, it still had an explicit limitation: the system learned
nly once – before running in real time – using examples of previous
nteractions with a single robot.
The next logical step and contribution, which we present in this

aper, is giving our improved touch system the ability to learn continu-
usly and on a large scale. What are we referring to? The goal is that as
ore social robots are distributed to more users, the touch system will
ontinuously learn from these new interactions without compromising
he identities of the users interacting with the robots. This is why we
ursue a dual objective: (1) to achieve distributed, continuous, and
arge-scale learning; and (2) to safeguard the information concerning
ow the user interacts with the robot and its biometric data.

.2. How?

Now that we have discussed the reasons for performing this work,
et us introduce how we propose to carry it out. On the one hand, we
tarted – as we have mentioned – from a system capable of detecting
hen, where, and how physical contact between a human and a robot
ad taken place. For example, we knew that at some moment (when),
someone had stroked (how) the robot’s head (where). The more accurate
he system is in performing these three tasks, the larger the set of
amples of past interactions it has and the higher the quality of these
amples, which act as examples to train the system, is. In other words,
t is a problem of quality and quantity.
The quantity of training examples can be increased from several an-

les: first, if each robot is continuously learning from new interactions,
e will constantly be expanding the training set; second, if we increase
he number of robots that interact with users, we will be potentially
ncreasing the global number of training examples.
On the other hand, in machine learning the quality of the training

ata is crucial. A system whose input is ‘garbage’ will undoubtedly
utput ‘garbage’ as well. In this sense, the quality of the training
amples depends mainly on having a great variety of contact types that
mean’ the same thing. This can be achieved by having many users
nteracting with the robot in a natural environment, that is, with real
nteractions, which give us higher-quality training data.
To achieve this large-scale and distributed learning, each robot
ust share what it learns in its local interactions with the rest of the
obots. In this way, all of the robots benefit from the new examples
earned. To see this from another angle and in an example perhaps
amiliar to the reader, think of the virtual keyboards we have on our
martphones, or the voice recognition system itself. Each new voice
ommand or phrase typed on the keyboard is sent to a server that
mproves future predictions (predictive text) or speech recognition. In
his central server, an NLP model is being perfected to help all users
sing the corresponding operating system (Android, iOS, etc.). In this
ay, the well-known powerful network effects are achieved: the more
sers there are in the system, the better the system will work for each
2

f them. b
This present-day example, which has an approach that is quite
lever from a technical point of view, is being strongly criticised by
ome users who do not want their personal data to be used on central
ervers for often unknown purposes (Liu et al., 2021). It is precisely
rom this criticism that new technical approaches, such as federated
learning (Verbraeken et al., 2020), and new laws like the European
General Data Protection Regulation (GDPR)3 have emerged.

This federated learning allows one to continue to benefit from the
advantages of network effects when it comes to distributed learning
without exposing – or sending over the network – any of the user’s
information. How is it possible to achieve this? The key is the following:
the client nodes and the server do not have nor do they receive all
the training samples; instead, they share the trained models. These
learned models contain meta-information that has no connection with a
particular user. In the case of learning using artificial neural networks,
the weights and biases of the different nodes of the network are
transmitted.

If the reader has a certain degree of knowledge of or familiarity
with machine learning techniques, it may surprise them to know that
by simply transmitting these local models,4 a global model can be
perfected. Furthermore, if this is true, how could this merging of local
models into a perfected global model be done? There are currently
several approaches to performing this fusion of models. In the next
section, we will see that both the literature available to date and our
results, which are presented here, show that federated learning does
not result in a deterioration of the system performance.

1.3. What?

Going into more depth about what we have developed to achieve
our objectives, let us start with some implementation details and tech-
nologies. The first thing to highlight is that our entire system has been
developed and implemented in the Mini (Salichs et al., 2020) social
robots that were self-developed within our research group. Mini is a
desktop social robot that enables multimodal interaction with humans
in a simple way. It is relatively easy to transport and, given its small
size, easy to install in any home.

On the other hand, the whole software system that provides intel-
ligence to these robots and the system that we present here were also
developed by our research group. However, we rely on several tech-
nologies that are widespread within the developer community: Ubuntu
(the operating system that assumes a Linux distribution) (Kelly, 2009);
ROS (the most widely used robotic operating system) (Quigley et al.);
Git (the software control system) (Spinellis, 2012); and programming
languages such as Python (Bogdanchikov et al., 2013), C++ (Strous-
trup, 1996), and Chuck (Wang & Cook, 2003). The concrete implemen-
tation of the work presented here has been created from scratch without
using any commercial or free federated learning tool.

In order to validate our system, we have performed tests with
seven robots participating in real interactions, comparing the ‘feder-
ated’ approach (which shares the models but not the example data)
and the traditional approach (which shares with the central node all
the training examples that each robot collects locally).

1.4. Main contributions

The main contributions of our work are listed below:

3 https://eur-lex.europa.eu/eli/reg/2016/679/oj.
4 The particular model that is transmitted depends on the specific machine

earning technique used in the federated model. We use artificial neural
etworks, and the transmitted model consists of the actual connection structure
etween neurons and the weights associated with each of the connections.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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1. We improve the previously presented touch system with a multi-
user, multi-robot, distributed, and scalable learning approach
that respects the privacy of the user’s information.

2. We present an asynchronous, client-driven federated system,
where the clients decide when to upload their models to the
server instead of having the server force the update. Each node
(in this case, each robot) has its internal criteria that acts as a
trigger to encourage them to share their hyperparameters.

3. We introduce a combination of incremental learning and a
weight correction system in the aggregation phase of federated
learning paradigm in order to increase the system’s accuracy to
mitigate the effects of long-term overfitting.

4. We have tested our distributed system in a real environment,
and the results improve upon those presented in our previous
papers. This probably occurs for two fundamental reasons: we
have a higher quantity and quality of training samples, and due
to our new federated distributed learning approach, thanks to
the cooperation of all the nodes, the robots achieve a superior
collective intelligence.

1.5. Document structure

The rest of the paper is structured as follows. First, Section 2 reviews
the literature related to federated learning and some of its applications
in multiple fields. Then, Section 3 details the hardware and software
lements involved in this proposal, including the robotic platforms
ith contact microphones beneath their respective shells, the touch
ecognition system, and finally, a description of the main contribution
f this paper — the federated learning module. Afterwards, Section 4
escribes the experimental part of this paper: the set of gestures se-
ected, the data collection process and how the dataset was created,
nd the different metaparameters of the system. Section 5 presents the
xperimental results obtained from the baseline approach compared
ith the results obtained by the federated proposal. Next, Section 6
nalyses these results and explores the system’s limitations in its current
tate. Finally, Section 7 contains the conclusions gathered from this
ork as a whole and lists different paths that could be explored in
uture iterations.

. Related work

Over the years, there have been significant advances related to dis-
ributed learning, and we will focus on these advances in this section.
f the reader wants to go deeper into state-of-the-art research related
o human–robot interaction by touch, in our two previous papers, we
eview this exciting research field (Alonso-Martín, Castillo et al., 2017;
Gamboa-Montero et al., 2020).

Verbraeken et al. (2020) make a detailed meta-analysis of ev-
erything related to distributed machine learning; this same survey
highlights the importance of data privacy, which we mentioned in the
previous section. The authors refer to the fact that federated learning
systems can be deployed so that the parts of the system – from now on,
we will call them nodes – can learn together while keeping the local
proprietary data confidential.

Brendan McMahan and Jakub Konený invented, minted, and di-
vulged the concept of federated learning in 2016 (Konečný et al.,
2016; McMahan et al., 2017). Both researchers were at the company
Google (now part of its parent Alphabet).56 According to these early

5 You can find some previous mentions of ‘federated learning’ in some
cientific communications by other authors: http://ksi.cpsc.ucalgary.ca/KAW/
AW96/prasad/subsection3_4_3.html.
6 Do not confuse federated learning and transfer learning: https:
/www.quora.com/What-is-the-difference-between-transfer-learning-and-
3

ederated-machine-learning.
works, federated learning (FL) was defined as a machine learning
environment in which the goal is to train a high-quality centralised
model while the training data remains distributed over a large number
of nodes, which each have unreliable and relatively slow network
connections. In this way, each node independently computes an update
to the current model based on its local data and communicates this
update to a central server, where node-side updates are aggregated
to compute a new global model. These authors applied their work
to smartphones and mainly focused on improving natural language
processing (NLP) systems to improve speech recognition and predictive
keyboard systems.

Now we will formally define federated learning: we can define
𝑁 data owners 𝐹1,… , 𝐹𝑁 , all of whom wish to train a machine
learning model by consolidating their respective data 𝐷1,… , 𝐷𝑁 . A
conventional method is to put all of the data together and use 𝐷 =
𝐷1

⋃

...
⋃

𝐷𝑁 to train a model 𝑀𝑠𝑢𝑚. A federated learning system is a
earning process in which the data owners collaboratively train a model
𝑓𝑒𝑑, and none of the data owners 𝐹 𝑖 expose their data 𝐷𝑖 to the
thers. In addition, the accuracy of 𝑀𝑓𝑒𝑑, denoted as 𝑉 𝑓𝑒𝑑, should
e very close to the performance of 𝑀𝑠𝑢𝑚, denoted as 𝑉 𝑠𝑢𝑚. Formally,
et 𝐸 be a non-negative real number; if |𝑉 𝑓𝑒𝑑 − 𝑉 𝑠𝑢𝑚| < 𝐸, we say
hat the federated learning algorithm has E-accuracy loss.
The reader may wonder how to transfer the knowledge learned

ocally (without transferring the learning examples) to other nodes to
mprove the global system. Several techniques have been developed.
n the case of using artificial neural networks at each node, the node
imply averages the weights already in its network and the new weights
hat were received. That is, we transfer weights, not examples. How-
ver, in the case of using other ML algorithms, it is not always possible
o use federated learning techniques. Non-parametric models in general
an be problematic since their configurations often heavily depend on
he exact data that were used to train them.
In 2019, Yang et al. (2019) extended the original ‘federated learn-

ng’ to a general concept for all privacy-preserving decentralised collab-
rative machine learning techniques. These papers also describe two
ossible alternatives: horizontally federated learning (the one we will
ocus on) and vertically federated learning (when models are shared
mong different companies and organisations).
In 2020, Li et al. (2020) publishes a review of current federated

learning applications (see Fig. 1), in which he describes: (a) applica-
tions for mobile devices, including those mentioned to improve natural
language processing, Internet of Things (IoT) use cases, as well as self-
driven cars; (b) industrial engineering, such as visual inspection or to
detect credit card fraud efficiently; (c) healthcare, in systems such as
disease prediction.

Also, in 2020, Aledhari et al. (2020) presented a meta-analysis
summarising the different variants of FL implementation as well as the
fields where they are currently being used. In this sense, it should be
mentioned that most machine learning techniques that currently use
this technique are based on what is known as deep learning (Lecun
et al., 2015), which is usually based on deep/convolutional artifi-
cial neural networks, although it can be applied to other ML tech-
niques such as multilayer perceptron-based neural networks. This au-
thor mentions the following applications: predictive text on smart-
phones (GBoard); ranking browser history suggestions; visual object
detection; patient clustering to predict mortality and hospital stay time;
drug discovery; fMRI analysis (fMRI data is related to different kinds
of neurological diseases or disorders); brain tumour segmentation; and
distributed medical databases.

As we can see, in these surveys – due to the relatively short period
of time since this technique was first conceived – there are no use cases
in our field of research, social robotics, and more particularly, there are

no use cases related to human–robot tactile interaction.

http://ksi.cpsc.ucalgary.ca/KAW/KAW96/prasad/subsection3_4_3.html
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/prasad/subsection3_4_3.html
https://www.quora.com/What-is-the-difference-between-transfer-learning-and-federated-machine-learning
https://www.quora.com/What-is-the-difference-between-transfer-learning-and-federated-machine-learning
https://www.quora.com/What-is-the-difference-between-transfer-learning-and-federated-machine-learning
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Fig. 1. Summary of Federated Learning applications extracted from Li et al. (2020).
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Fig. 2. Complete pipeline of the Acoustic Touch Recognition (ATR) system (Gamboa-Montero et al., 2020).
. System setup

Motivated by the idea of introducing the federated learning (FL)
oncept to a new field, in this case, social robotics, we have designed
system specifically for this work. This section presents the different
lements composing the FL system. Three main elements can be distin-
uished: the tactile recognition system, which is in charge of extracting
he information transmitted through the FL system; the robotic platform
hat the user interacts with, which will store this information; and
inally, the FL infrastructure, which is designed to allow distributed
earning among a group of robots in a privacy-friendly way.

.1. The acoustic touch recognition system

The first element of the complete federated setup is the detector.
resented in the work from Alonso-Martín, Castillo et al. (2017) and
ater in a follow-up publication (Gamboa-Montero et al., 2020), the
coustic Touch Recognition (ATR) system is primarily designed to
ecognise and localise a touch gesture made on a robot. The detector
lso features the novel application of piezoelectric pickups in social
obotics, specifically in human–robot touch interaction. These devices
an perceive the sound vibrations generated when a user touches the
obot’s surface; the perturbations generated by the contact then propa-
ate through the rigid parts of the robot (its shell and inner structure),
eaving a distinct signature that allows the system to identify the kind
f contact that occurred and its location on the robot’s surface. Another
emarkable feature is that the system uses a small number of sensors,
nlike other approaches in the touch recognition literature (Hughes
t al., 2017; Silvera-Tawil et al., 2014; Zhou & Du, 2016).
The system’s working principles are as follows: when multiple sen-

sors perceive an interaction, the system starts to process their signals
separately, extracting a set of features in the time and frequency audio
domains. When the system detects the end of the contact, it computes
the extracted features’ average values during this timespan. These
values then become part of a labelled instance representing the contact
that occurred. A dataset composed of these instances is later used as
training data to classify the gesture using machine learning techniques.
Fig. 2 illustrates the complete pipeline of the system described above. It
should be noted that the system has changed from the version presented
in the work from Gamboa-Montero et al. (2020). In its latest version,
the ATR system can interact with capacitive sensors. Although they
are hardly influenced by external noises, piezoelectric microphones
are susceptible to false positives caused by external noises, if they
occur on surfaces in contact with the robot, or internal noises that
are caused by the robot’s servomotors. The system’s compatibility with
these types of sensors enhances its ability to detect physical contact.
This improvement was listed as something to be done in future work
for the system presented in previous papers.

As the reader might have perceived, the system bears some resem-
blance to human activity recognition (HAR) systems (Kumari et al.,
2021; Morris et al., 2014; Muaaz et al., 2021) (mainly in the real-
time signal processing phase) since the information extracted from a
microphone could also be extracted from an HAR device such as an
accelerometer. The main difference between this kind of system and
the one described in this section is that HAR systems, as their name
implies, gravitate around a person doing an activity, while in our case,
5

the central reference point is a robot.
3.2. Mini the social robot

The next element that composes the system is the robotic platform.
Mini (Salichs et al., 2020) is a social robot designed to coexist with the
elderly in their homes, offering mainly assistance and entertainment.
Conceived to extend independent living, Mini combines applications
for entertainment, assistance, and cognitive stimulation in a desktop
platform. Therefore, this robot could be considered a combination of a
home companion and assistant robot.

Regarding the robot’s appearance, the objective is that the exterior
design of the robot should resemble that of a living creature rather
than a machine. So, with that in mind, it was essential to endow the
robot with expressive capabilities. Mini can transmit its emotional state
through its expressive eyes, an LED-based beating heart, its cheeks,
and the motion of different body parts. For this purpose, Mini has
servomotors in its arms, base, and neck to allow simple but natural
movements to convey liveliness. The materials of the external parts
also encourage people to have a positive attitude towards the robot.
For this reason, Mini’s body is covered with foam and fabric, giving it
the appearance of a stuffed toy.

With respect to the sensors integrated into the robot, Mini currently
has an electret microphone, which is designed for verbal interaction
with the robot through automatic speech recognition (ASR), and ca-
pacitive sensors distributed beneath its surface (except for the back),
including rigid parts and the foam rubber of its body. Finally, the robot
also integrates four contact microphones, which are compatible with
the ATR system that was explained before. The contact microphones are
positioned in the same way as the capacitive sensors to avoid hindering
tactile interaction between the user and the robot. Three of them are
located inside the rigid surfaces, in both of the arms and the head, and
the last piezoelectric pickup is located in the middle of the robot’s body.
This way, Mini can detect touch interaction all over its body except for
its back, because its back is made of a separate piece of foam.

3.3. Federated learning module

The last component of the system is the federated learning frame-
work. In contrast to the systems introduced in the previous sections, this
module was specifically designed for this project. Thus, the objective of
this work is the design and implementation of a system based on the
federated learning paradigm, allowing knowledge to be shared among
several nodes, in this case, social robots, without compromising the
privacy of the robot user’s data. The use case is as follows: several users
have to interact with different robots, but their interaction is limited to
a particular platform. In this case, the simulated scenario is intended
to resemble a nursing home where multiple users can interact with the
same robot, but the platform cannot share information directly with
robots present in other nursing homes nor with a server in the cloud.

Since tactile interaction with a robot occurs sporadically, it cannot
be ensured that when the central node, the server, requires the nodes
to be updated, they will have sufficient information to improve the
system optimally. Therefore, it would be impractical to force the nodes
to train simultaneously. For these reasons the system’s design involves
asynchronous elements, as clients can request the model on demand
and do not have to rely on the server to summon them. This last feature
has relevance since, as highlighted by Lu, Liao et al. (2020) and Lu,
Huang et al. (2020), the asynchronous relationship between the clients
and the server, events such as uneven learning samples and different
learning progress are some of the challenges federated learning has to
face at the moment.
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As the work from Kholod et al. (2021) shows, the communications
ramework is a significant element in the FL diagram. Their work
s a comparison between multiple open-source FL frameworks. For
he proposal presented in this paper, the various open-source options
entioned by Kholod et al. (2021) were considered, but most of them
ere discarded due to their extreme dependence on deep learning
ibraries such as TensorFlow or Keras and their orientation towards
arge-scale deployments. However, due to the fact that, for the moment,
he amount of clients is not abundant, we think using algorithms such
s deep neural networks might introduce unnecessary overhead. Also,
t is possible that the system would not be able to converge to a solution
ue to the scarcity of the samples. In this case, instead of using a
eep learning-oriented framework, we preferred to design the system
rom scratch using ROS as the communications infrastructure, and the
cikitLearn Python library to integrate the required machine learning
ools.
Among its features, ROS already has the tools to serialise and

ustomise the information sent. Another remarkable feature is that the
odes can communicate asynchronously almost by default, which is one
f our system’s requirements. Despite this, ROS does not have a library
hat combines its communications middleware with the infrastructure
f a federated approach. Therefore, it has been decided to create such
n infrastructure from scratch by taking advantage of ROS’s tools. The
ase communication protocol in ROS is the publish/subscribe model,
very flexible communication paradigm. But, its many-to-many one-
ay transport is not appropriate for RPC request/reply interactions,
ike those required in a distributed system such as a federated one.
herefore, request/reply will be done via ROS Services, defined by a
air of messages: one for the request and one for the reply. A providing
OS node offers a service under a string name, and a client calls the
ervice by sending the request message and awaiting the reply.
Despite the advantages, ROS-developed systems tend to have lim-

tations when the nodes in the system are numerous and belong to
ifferent network domains. Therefore, a large deployment with mul-
iple robots placed across domains might require a much more refined
OS network configuration (e.g., communication through a VPN) (Juan
Cotarelo, 2015). However, in future iterations of the system we plan
o evaluate the behaviour of our design and test its performance in these
inds of large-scale scenarios.
According to Wang, Chen et al. (2020), a federated system should

be based on two different groups of components: first, the agents
(also called nodes), and second, the information from the model. More
specifically, the agents are defined as the different components of the
system that trade information regarding the model. In the scenario
proposed in this work, two types of agents could be differentiated:

• Clients. They train their machine learning models locally and send
their parameters to the server to update the global model. More
specifically, the clients in our system contain an Artificial Neural
Network (ANN) as the estimator of choice for the model. The
clients are represented by several social robots with different
users assigned to them. These users will touch the robot in various
ways to enlarge the dataset from which the federated system will
take the training instances.7

• Server. The server is in charge of building the global model by
adding the parameters of the local models and sending them back
to the clients. It consists of a central computer.

After the nodes, the next crucial component of the FL system is the
information that is transmitted between the agents in both directions.
More specifically, this information could be divided into two different
groups:

7 Note that in this work the words ‘client’ and ‘robot’ are used
nterchangeably.
6

Fig. 3. Phases of the proposed federated system.

• Client–server information. It is composed of the metaparameters
from the client’s local model after it has been trained with a
set of instances. More specifically, it consists of a ROS Service
containing two matrices. The first one is a 3 × 3 matrix containing
the weights (or coefficients) of the Artificial Neural Network,
while the second one contains a 2 × 2 matrix with the biases.
Additionally, an extra parameter has been introduced called ‘sub-
ject’. This parameter allows the client to asynchronously request
the current version of the system without sending its local model.

• Server–client information. The server aggregates the hyperparame-
ters to the global model, and then, it sends this updated model
back to the client that sent its model. The server sends the
information in the same format in which it was received, as two
matrices, with both the weights and the biases of an ANN.

Additionally, this last part of the section describes how the agents
interact. Fig. 3 shows the schematic of these phases, and they are
described in detail below:

1. Each client starts by creating a generic, untrained model based
on the same metaparameters. This is done by using the same
random seed in the initialisation.

2. Each client asynchronously gathers a certain amount of instances
representing touch gestures by a series of unique users, as a
result of successive tactile interactions. In this paper and for test-
ing purposes, the system will save the instances (in a stratified
fashion) in two subsets: training and testing, respectively.

3. The client then sends the trained model to the server. Since the
system is expected to work asynchronously, the client decides
when to upload its model. At this point, we also studied how the

system would behave if the local model is updated with the one
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on the server before training the model with the last version of
the local dataset. This is relevant since, as we mentioned earlier,
the clients will upload their models asynchronously, and after
some time without contacting the server, a client’s local model
might be outdated.

4. For the nodes to be encouraged to share with the rest the
information that their models have learned (the weights of their
artificial neural networks), it is necessary to determine under
which criteria this sending of weights takes place. Specifically,
each node shares its weights with the rest under any of these
conditions: (i) the first time the node connects to Internet or
when the connection was lost and is reconnected later; (ii) when
the user explicitly indicates it; (iii) after a certain number of new
touch instances.

5. When the server receives the client’s model, it aggregates the
parameters of its current model and the client’s model. In this
case, the aggregation algorithm will be a variation of the FedAvg
algorithm, with an averaging-weight correction added. As we
will explain in the next section, the weights in the aggregation
process between the server model and the client’s model will
vary with each interaction between the agents. More specifically,
we experiment with two weighted averaging models based on
an exponential function: the first will consist of an exponential
decay function, and the second will be an exponential growth
function.

6. The server returns the model to the client that requested per-
mission to upload its model. Then, the client will test its model
using the previously mentioned test data, and it will calculate
the current accuracy/error.

7. The process of sending and receiving the model between the
server and the client will continue indefinitely, with each client
retraining with its local dataset incrementally as its correspond-
ing ATR system gathers more training instances. In this case, in
order to do the tests, the number of instances has to be finite, so
the system will continue until all the information is consumed
in the training process.

As it is mentioned in Phase 4-i, The system should be able to handle
client node disconnection, a frequent event in a federated architecture.
For that, ROS provides tools to ping from the client to the server in
cases where the client evaluates that it is ready to upload its model. In
addition, we have also enhanced the system by using the Python library
socket,8 which allows the client to check if it has access to the internet.

4. Methods

This section covers the experimental part of the study including the
data collection procedure, the dataset creation process, and the various
system metaparameters and their values for the experiments.

4.1. Experimental setup

After defining the elements that compose the proposal, we set up
an experimental environment designed to test the capabilities of the
federated system. As opposed to what we described in Section 2, in this
work, we present a small-scale system designed to operate in systems
with few nodes that generate instances sporadically, without a massive
dataset.

Since the implementation we offer in this work is intended to resem-
ble a real-world system, another feature of the proposal is that it does
not rely on a massive online dataset but generates its dataset locally for
each client. In other words, the proposal represents a complete machine
learning system that integrates a data gathering phase; a local training

8 Socket library webpage: https://docs.python.org/3/library/socket.html.
7
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Fig. 4. Schematic with the experimental setup of the federated system in a Mini robot.
The touch gestures representation is at the left and the robot with the sensing zones
containing the piezoelectric microphones is at the right. The touch gesture images are
extracted and adapted from the work of Silvera-Tawil et al. (2014).

phase, a learning distribution phase through federated learning, and
finally, to test the system’s effectiveness, a validation phase.

The dataset designed for the experiment consists of a group of touch
gesture instances extracted using the ATR system. The information has
been extracted from a series of microphones placed at various key
points on the Mini robot. The sampling rate of the microphones is
44 100 Hz and the audio signal features contained in each instance
have been extracted by means of non-overlapping sliding windows that
include 512 samples each. No extra preprocessing has been performed
on the extracted sound signal.

Twenty-eight users participated in the experiment, 21 males and 7
females; they were between 18 and 40 years old. They were divided
into different groups, one per robot. The experiment consisted of per-
forming a set of tactile gestures in random order on seven identical
Mini robots. The gestures were performed on three different areas of
the robot’s body, specifically on its arms and its belly. The head was
omitted not to subject the robot’s neck to excessive stress. The touch
gestures were selected from a group of four gestures: tap, slap, tickle
and stroke. They are covered in detail in Gamboa-Montero et al. (2020)
nd belong to the ‘dictionary’ from Yohanan (2012). Fig. 4 shows the
obot setup along with the set of gestures. Instructions about the set
f gestures the user had to perform and the way they had to perform
hem were given almost entirely by the robot (there was supervision
uring the process in case the robots malfunctioned). At the end of the
xperiment, we had gathered a dataset of 3280 instances.

.2. Federated system metaparameters

We can define three different groups for the metaparameters of the
roposed federated system, coinciding with three different abstraction
evels. These levels are the neural network hyperparameters, client

arameters, and finally, the federated server parameters.

https://docs.python.org/3/library/socket.html
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4.2.1. Artificial neural network-related parameters
This is the lowest level of abstraction. To avoid increasing the

degrees of freedom of the experiment, we decided to modify two
hyperparameters of the multilayer perceptron present in ScikitLearn.9
ollowing prior experiments regarding federated systems (Kholod et al.,
021; McMahan et al., 2017), we found that the minibatch size, number
f epochs, and learning rate tend to have the most impact in these
nvironments.
At first, preliminary testing with the datasets showed that the
inibatch size 𝐵 had the greatest impact on the system at a global
evel. This outcome seemed to be coherent with how the system is
esigned, since each communication round is defined by the number
f instances invested in the round, a number that is intimately related
o the number of instances that the perceptron uses per epoch to train.
ollowing the literature, we selected 25, 50, and 75 instances per batch
or the tests.
We also performed testing by modifying the number of epochs 𝐸.

In this case, the testing was less intensive, and it was performed upon
the best values obtained from changing the minibatch size. The values
selected are 250, 500, 750, and 100 epochs per minibatch.

The rest of the hyperparameters of the neural network retained
their default values. For these experiments, we highlight the learning
rate mode, which remained constant ; the learning rate initialisation
value 𝜂, which remained 0.001, and the warm start parameter, which
as changed to True in this case, since the network has to be trained
ach communication round. Finally, the activation function remained
rectified linear unit function (ReLU), and the solver was adam.

.2.2. Client-related parameters
The next level corresponds to the federated client. In this instance,

he main parameter that we will modify during the test will be the
umber of instances per round (per client) 𝑛𝑡𝑘. This parameter has
n intimate relationship with the more common number of communica-
ion rounds (𝑇 ), as shown in Eq. (1):

=
𝑛𝑘
𝑛𝑡𝑘

, (1)

here 𝑇 is the total number of communication rounds, 𝑛𝑘 is the total
umber of instances a client has, and 𝑛𝑡𝑘 is the number of instances per
ound per client. We decided to use 𝑛𝑡𝑘 instead of 𝑇 since it might help
o express more clearly how a federated system would be triggered in
n asynchronous environment. Despite this, as Eq. (1) shows, the terms
re equivalent.
To set the ranges for 𝑛𝑡𝑘 in the test phase, we opted to find a

alance between 𝑛𝑡𝑘, 𝑛𝑘, and 𝐵. After some preliminary testing, the best
esults were obtained when these three metaparameters followed the
ule shown in Eq. (2):

≤ 𝑛𝑡𝑘 <
𝑛𝑘
2
. (2)

.2.3. Server-related parameters
One of the main characteristics of FL is aggregating each client’s
odel into a single model, so the aggregation function should not de-
rease the accuracy of the model. When calculating a regular average,
ach data point has an equal weight, and thus they contribute equally
o the final value. Weighted averages, on the other hand, weight each
ata point differently. Normally, the aggregation of the parameters in
he server is based on the amount of data in every node. In this work,
s we explained in the previous subsection, the number of instances
𝑡𝑘 will be a ‘trigger’ for the client to upload its model, in spite of
he more commonly seen number of communication rounds 𝑇 . This is
ecause of the asynchronous design of the system: the clients will not
e expected to upload their models at the same time, coordinated by
he server. For this reason, it is impossible for the server to know the

9 It is a particular case of the implementation of an artificial neural network.
8

Fig. 5. Growth and decay exponential functions for the weight correction in the
aggregation phase.

amount of data that a single client has compared to the others when this
client is demanding an update. Thus, designing an aggregation scheme
depending on the amount of data each client has contributed to the last
communication round is not possible. Therefore, we decided to make
the weights fluctuate depending on the total number of interactions
between the server and the clients.

The next step is to model the function and also to define a set of
requirements that the weight fluctuation should meet. The first decision
to make on this matter was if the weight of the local model with respect
to the model present in the server should decrease or increase over
time. We decided to test both options: a weight growth function and
a weight decay function. The next step was to decide on the shape
of the function. In this case, we opted for a non-linear function to
make the aggregation more impactful in the early stages of the training.
Lastly, the bounds of the function are between 0 and 1, representing the
upper and lower limits of a weighted average. The relation between the
server’s model parameters and the client’s uploaded model is shown in
Eq. (3).

𝜔 = 𝜔0 ⋅ (1 − 𝜏) + 𝜔′ ⋅ 𝜏, (3)

where 𝜔 represents the server’s model parameters after the aggregation,
𝜔′ represents the parameters of the client’s model, 𝜔0 represents the
server’s model parameters before the aggregation, and 𝜏 is the output
of the function modelled according to the constraints mentioned before:

𝜏 = 𝑏 ⋅ 𝑒−𝜆𝑑 ⋅𝑥. (4)

Eq. (4) shows the first function that meets the requirements listed
before. In this case, the function decays depending on the number of
requests sent to the server. 𝑏 is the bias or initial value after the server
receives a client’s model parameters (the first time, the server will
adopt the weights of the client directly), and 𝜆𝑑 is the decay rate of the
function. Equivalent to the decay function is the growth function shown
in Eq. (5), which is designed to be symmetric to the former function
with respect to the 𝑥 axis.

𝜏 = 1 − (1 − 𝑏) ⋅ 𝑒−𝜆𝑔 ⋅𝑥. (5)

Fig. 5 shows both functions for bias values of 0.25, 0.5, and 0.75,
and a 𝜆 rate of 0.025. For the experiments we used 0.25, 0.5, and
0.75 for the bias, and for the rate, we used values from 0.01 to 0.05.

These ranges of values were estimated heuristically. From now on, we
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Fig. 6. Distributed system.

ill refer to the bias 𝑏 as the federated bias and to 𝜆 (both 𝜆𝑑 and
𝜆𝑔) as the federated rate, and whether the function grows or decays
(thus specifying whether we are using 𝜆𝑑 or 𝜆𝑔) will be considered the
federated mode.

5. Results

The system will be tested and evaluated with respect to two baseline
scenarios. The first scenario will use a distributed model on the server
to test against the global dataset, which is a more conventional version
of the system. The second reference scenario is more similar to the
federated system, but in this case the main difference will be the fact
that each of the clients will train in isolation with their local datasets,
without sharing their models or their data. This way, we replicate the
same incremental training described in Section 3.3, but, in contrast to
he federated phases, without sharing information. This way we can
etermine if the incremental training provides an advantage by itself.
astly, we will assess the performance of the federated system itself.
fter setting the metaparameters as described before, the system will
ollow the steps explained in Section 3.3, training incrementally in each
ommunication round. For this evaluation, we need to clarify that the
lients will train successively in order.

.1. Baseline approaches

.1.1. Distributed system
First, we present the distributed solution, or the conventional ap-

roach, which assumes that instances are shared directly between
odes to build a global dataset to train a classifier model, in this case
neural network. The pipeline of this architecture is shown in Fig. 6.
The proposed ANN model and the dataset gathered for this exper-

ment (described in Section 4.1), which was divided into two subsets,
0% training and 20% testing, achieved an F-measure of 74.72% on
he test set. In order to test if the incremental features of the federated
ystem might pose an advantage by themselves, we performed a similar
xperiment (with a distributed system), but in this case, with incre-
ental training for 200 and 400 instances. The F-measure achieved
ith this strategy showed no significant improvements. The best results
tuning the neural network) were 71.79% for 200 instances per round
9

nd 72.24% for 400 instances per round.
Fig. 7. Locally-trained isolated clients.

Table 1
Results of the locally-trained clients scenario.
Instances
per round

Minibatch
size ANN

Max.
F-measure

Min.
F-measure

Avg. 𝜎

75 25 79.81 63.38 71.40 6.04
75 50 83.34 66.65 73.09 5.99
75 75 80.98 64.67 73.42 5.45
150 25 82.18 68.87 75.55 5.55
150 50 82.45 68.73 76.49 5.97
150 75 82.22 69.58 76.45 5.41

5.1.2. Locally-trained isolated clients
The scenario presented in this approach is more similar to the feder-

ated system. In this case, the main difference with respect to the latter
is that the clients train in isolation with their local datasets, without
sharing their models or their data. As in the previous subsection, the
objective is to check if the incremental nature of the training may
provide an advantage by itself. Table 1 shows the results of the best
clients and the worst clients in terms of the mean and the standard
deviation for the combinations of the metaparameters mentioned in
Section 4.2. Fig. 7 shows the pipeline of this approach.

5.2. Federated approach

Lastly, our proposal in this work is the federated approach. In the
FedAvg aggregation algorithm presented by McMahan et al. (2017),
the weights of the different local models are averaged by the server
to provide new weights and, thus, a new aggregated model. For this
system, a variant of the FedAvg aggregation algorithm is presented.
More specifically, the weights of the incoming model, in the average
calculated between the server and client models, are corrected in
each iteration using an exponential function. Two different options,
explained in detail in Section 4.2.3, have been tested, an exponential
decay function and an exponential growth function, respectively. We
also performed tests with no weight variation, with a ‘vanilla’ version
of the FedAvg system. The federated system’s architecture is shown in
Fig. 8.

For this experiment, we went a step further by also measuring the
impact that receiving the current global model has on the system right
before training the model with the last version of the local dataset, as
explained in the fourth step of the system’s phases in Section 3.3. For
the sake of clarity, ‘pull’ indicates that the client has ‘pulled’ the global
model before training, and ‘no pull’ indicates that the client has skipped
this step.

Table 2 summarises the best results obtained by following the steps
described above, with the corresponding system metaparameters and
the difference between this result and the best result of the client in the
isolated case (explained before). The client models trained with FedAvg
obtained a mean F-measure of 82.19% on their own local test sets.
This is slightly better than the local learning F-measure of 78.12% that
occurs when the clients train incrementally and are isolated from the
server. Surprisingly, ‘pulling’ the model before training did not provide
the best results in any client.
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Table 2
Best results of the federated system per client compared with the results of the isolated clients scenario.

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7

Federated mode Weight decay Weight growth Constant weight Weight decay Weight decay Weight growth Weight growth
Federated bias 0.75 0.75 0.75 0.75 0.5 0.5 0.75
Federated rate 0.01 0.025 0 0.01 0.01 0.025 0.01
Local train samples 150 75 75 150 75 150 150
Minibatch size 50 50 25 50 75 50 50

Pull? No No No No No No No Average

F-measure 75.88% 88.66% 78.79% 79.96% 79.28% 86.06% 85.18% 81.97%
Best locally-trained 74.53% 83.34% 75.77% 76.92% 70.07% 82.28 82.22% 77.88%
Difference +1.35% +5.32% +3.02% +3.04% +9.21% +3.78% +2.96% +4.10%
Fig. 8. Our approach: federated learning.

Table 3
Summary of the results.
Source F-measure

Our previous works (ANN) 78.7%

Regular 73.67%Distributed system Incremental 72.08%

Locally-trained isolated clients Average between best clients 77.88%

Federated system Average between best clients 81.97%

6. Discussion

Table 3 shows a complete comparison of the results. The original
study of the dataset by Gamboa-Montero et al. (2020) (the first row in
able 3) proposed a logistic regression classifier (LRC)-based solution
or a touch classification with four different touch gestures (tap, slap,
ickle, and stroke) and reached an F-measure of 87%. In this same
tudy, the multilayer perceptron (MLP) model had an F-measure of
8.7%. This has special relevance since the model introduced in the
ederated system is based on the same estimator. Currently, the major-
ty of current state-of-the-art human–robot touch recognition (HRTR)
olutions incorporate approaches based on similar models. Our own
ork displays performance results similar to those shown in the work
f Gamboa-Montero et al. (2020), as well as those of our proposed MLP
model. The reader can perceive at first glance that the results improve
upon not only previous work but also two more baseline approaches,
constructed with the same dataset as the federated system. First, there
was the distributed system, which was divided into two options: a reg-
ular, one-time fit with the complete dataset, and incremental training
10

constructed like the federated system. In this case, using an artificial
neural network with the same hyperparameters gives the worst results,
with an F-measure decay of 8% with respect to the average F-measure
of the federated clients (as shown in the table, 82.19%) in the case of
the regular fit, and it gives an even worse F-measure when the training
is done incrementally.

The second baseline is a decentralised system in which the clients
train incrementally, but in this case, without sharing any information at
all; they just train and validate with their own datasets. These tests were
designed to prove that the federated aggregation actually introduced an
improvement to a much simpler distributed system. As the table shows,
our approach improves all aspects of the results, from the best client’s
F-measure to the average F-measure computed from all the clients.

6.1. Limitations and lessons learned

Despite its advantages, the system also has its shortcomings. In the
first place, asynchronous federated learning aims to provide a freer
learning environment for the nodes and to reduce the loss of precision
caused by extremely unrestrained learning. Despite this, it also some
limitations that can impact the system’s performance in the long term.
For example, events such as uneven learning samples and different
learning progress, may arise in asynchronous federated learning be-
cause it is unreasonable to expect the nodes with large differences to
update the global parameters equally. We expect to explore in further
works the performance of our system in this aspect, by augmenting the
number of nodes and by running the system for longer periods of time.

Following this idea, in future experiments, we could also explore if
there is a maximum server capacity limit to attend simultaneous and
uncoordinated updates of hundreds of nodes. In that case, it would
be necessary to establish hardware and software mechanisms to avoid
potential server congestion. However, in the tests carried out, we are
far from such congestion in processing information. Concerning the
software measures, it would be possible to design a queuing request
system (or queues with priorities) so that requests are queued to be
attended to as soon as possible during a demand peak. It must be
considered that updating the weights in the nodes would not require
very low latency since it would not be critical for a node to continue its
regular functioning while waiting for the next update. For the hardware
measures, thanks to the cloud infrastructures provided by many service
providers (such as AWS, Azure or Google Cloud), it would be relatively
simple and low-cost to scale the server’s computing power to the actual
demand needs of our system.

Also, due to the fact that the dataset for each of the robots is unique,
since it is composed of a unique set of users, the data distributions of
the federated clients (robots) might differ greatly. This phenomenon
is known as ‘non-IID data distribution’ (Zhao et al., 2018) and it may
cause severe model divergence, especially for parametric models in hor-
izontal FL, which is the case presented in this paper. More specifically,
among the categories of non-IID data presented in Zhu et al. (2021),
our dataset manifests a label distribution skew, due to the fact that
the users were each asked to perform a random set of gestures. Many
authors have proposed federated learning specifically to tackle the non-
IID problem (Kholod et al., 2021; McMahan et al., 2017). However,
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this learning paradigm still has to face some challenges in this aspect,
especially in long-term scenarios, due to the heterogeneity in local data
distributions (Briggs et al., 2020; Sattler et al., 2020; Shoham et al.,
2019; Zhao et al., 2018).

In our case, taking into account that the dataset only suffers from
one of the aforementioned skews, it has been decided to compensate
for the effects that may arise from the non-IID distribution through
a modification of the aggregation algorithm, that is, the successive
modification of the average between the server model and the client
model through an exponential function. Tests in this sense have been
performed both with a decay function, in order to give successively
less importance to the new model, and with an exponential growth
function, because the training of the multilayer perceptron in each
round is performed with an incremental number of samples, which
implies that the retrained models will perform better in successive
rounds of communication.

The results have improved upon the results presented as the baseline
in a system composed of seven nodes, but there is still room for
improvement. In this regard, studying the maximum and minimum
number of clients that the system could handle could also inspire fur-
ther works concerning this system. In our particular case, this analysis
was conditioned by the fact that the dataset was designed ad-hoc for
this work, and we did not want to enlarge it artificially. In the case of
wanting to scale the system to thousands of nodes running in parallel,
and wanting to update their weights with the central server, it could
cause that, due to the limited resources of the server, it would have to
incorporate some policy (such as the one presented in the works by Lim
et al. (2020) and Ng et al. (2022)) to decide the priority with which to
attend each request from the nodes.

On another matter, as a decentralised machine learning technique,
federated learning addresses privacy concerns by distributing the train-
ing work to distributed users. However, this also brings some new
security concerns. Privacy issues arise from two main aspects: the
vulnerability of the server and the vulnerability of the clients. In the
case of the server, the centralised aggregating scheme might be vulner-
able to the malfunction of the former. Moreover, attackers may learn
private information from these model parameters. With respect to the
clients, threats can come from malicious participants. As an example,
the Byzantine attack could also be implemented in the learning scheme.
In a Byzantine attack, malicious client users may provide bad or low-
quality updates to the server when they get the global model from
the server. In this sense, more privacy-oriented approaches like the
one presented in the works by Lu, Liao et al. (2020) and Lu, Huang
et al. (2020) have tried to provide solutions consisting of, for example,
introducing a distributed peer-to-peer update scheme instead of the
more common centralised update system or an update verification
phase.

In the line of an update verification phase mentioned before, we
would like to add that integrating knowledge in a federated system
is a challenge the literature previously mentioned has tried to solve.
Deciding whether a sample is effectively classified is one of the solu-
tions proposed. In our approach, we used the F-score (or F-measure) to
evaluate our confidence in classifying each touch through a test dataset.
Although not perfect, this metric is commonly used as it considers both
false positives and false negatives, representing the harmonic mean of
precision and recall. However, when targets are imbalanced, using the
F-measure might not be the best choice. The Kappa score is a metric
that the system might implement in a complementary way to solve this
issue. In future work, we will look at reporting the results obtained from
different angles using different metrics.

Finally, to end this discussion section, we would like to summarise
in Table 4, the strengths and weaknesses of the work proposed here, in
conjunction with others listed by Li et al. (2020) and showed in Fig. 1,
relatively similar and relevant works, but in other application areas.
These application areas involve: smartphones (Chen et al., 2019; Wu
et al., 2020), autonomous electric vehicles (Saputra et al., 2019), smart
sensors (Ouyang et al., 2021) and niche software (Liu, Wang et al.,
11

2020; Liu, Wu et al., 2020; Wang, Tong et al., 2020).
7. Conclusions

In this paper, we propose a federated learning system able to learn
from decentralised data without having to share the users’ private
information. The nodes learn from their own datasets locally with the
objective of interpreting the tactile interaction that occurs between
humans and the nodes, which in this case are social robots.

The system works as follows. After a node gathers a certain amount
of instances in its local dataset, it proceeds to locally train its local
model. Then, it uploads the model parameters to the server. Once the
global model is updated, the server returns the resulting parameters
to this node. All nodes perform this operation asynchronously without
waiting for the remaining nodes and without the need to synchronise
the learning process. Throughout this learning process, the nodes only
communicate with the parameter server; they do not have any informa-
tion about the remaining nodes except for the global parameters that
are jointly maintained.

In our approach, we introduced federated learning in a social
robotics use case for the first time, specifically in the field of human–
robot touch interaction. This allows collaborative and distributed learn-
ing, in which each robot is encouraged to share its knowledge with
other robots in the same environment without exposing its own data.
This work also contributes to improving the previously presented
touch system, with a multi-robot, multi-user, and distributed learn-
ing approach. Additionally, we present a client-driven asynchronous
federated system in which the clients decide when to upload their
models to the server, instead of being forced to upload their parameters
synchronously by the server. The results improve upon the results
presented as a baseline: There was a distributed version of the system,
with a global dataset; a system composed of multiple isolated clients,
training with only their local sets of samples; and finally the results
presented in our previous work (Gamboa-Montero et al., 2020). With
respect to the data gathered for this proposal, we verified that the
proposed federated system results are close to the results obtained with
a traditional, distributed approach.

Despite this, there are still challenges that need to be addressed in
future research, such as uneven learning samples and uneven learning
progress. These problems are typically related to asynchronous feder-
ated learning due to an unbalanced usage of the nodes by their users.
To address some of the consequences, we proposed, on the one hand,
having fixed client-side parameters to trigger the update. On the other
hand, we proposed a weight correction function in the aggregation
phase to try to mitigate the problem of unbalanced learning statuses
in asynchronous federated learning.

As part of a new research topic, the system presented in this paper
still has room for improvement. One of our future goals is to discuss the
influence of non-IID data, and therefore the robustness of the system,
in a long-term scenario. The exploration of the system’s performance
in this kind of scenario is also encouraged by the incremental nature of
the learning itself. The last item to consider, which is closely related to
this topic, is the scale of the system. In this iteration, the system was
tested on seven robots. This number was limited by the availability of
the platforms at the time. In future iterations of the system, with more
platforms available and disseminated outside the laboratory environ-
ment, we could also test the impact of the communication costs on a
server with the current communications infrastructure in a larger-scale
iteration of the system.

Another incipient line, on which we are starting to work, consists in
analysing the sequence of touches that the user performs with the social
robot. The objective is to try to determine the user’s real communicative
intention: to show affection, care, reprimand, etc. This type of semantic
information about the social interaction could be gathered by a mul-
timodal analysis that considers the complete sequence of interactions
and the history of the user’s behaviour with the robot. The system might
include image processing sensors with eye tracking and face recognition

technology that could operate in conjunction with the ATR system.
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Table 4
A summary of some relevant federated learning-based applications with their pros and cons, and the proposed system.
Application domain Studies Pros Constraint

Smartphone keyboards:
Chen et al. (2019) and Wu
et al. (2020)

Learn out-of-vocabulary words Expanding the vocabulary of the keyboard
without exporting sensitive text

Strongly relies on a learned probabilistic model

Smart devices motion
sensors: Ouyang et al.
(2021)

Human activity recognition Identifies and reject erroneous clients A little bit worse performance that centralised
models

Image representation: Liu,
Wu et al. (2020)

Obtain various types of image
representations from different tasks

Be validated on three kinds of FL settings More beneficial for the smaller dataset than the
larger one in horizontal FL

Text mining: Wang, Tong
et al. (2020)

Spam filtering and sentiment analysis Provides guarantees on both data privacy and
model F-measure

Should take more reliable measurements

Electrical vehicles: Saputra
et al. (2019)

Federated energy demand prediction Applied the clustering-based energy demand
learning method for to further improve the
prediction F-measure

Need to be more stable and flexible

Robot network: Liu, Wang
et al. (2020)

Robots imitation learning Increases imitation learning efficiency of local
robots in cloud robotic systems

Need to further work on convergence
justification of the fusion process

Human–robot touch
interaction

Improve touch detection
and classification

Asynchronous and distributed system,
client-driven, multi-user and multi-robot system
with incremental learning

Untested in production with thousands of
nodes working in parallel and vulnerable
cyber-attacks
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