160 research outputs found

    An alternative origin for nanobacteria in kidney stones

    Get PDF
    Small (50e200 nm), calcium phosphate (apatite)-covered organic particles called nanobacteria or calcifying nanoparticles (CNP) seem to be ubiquitous in kidney stones and are thought to be involved in stone formation. Although initial claims that these particles are the smallest known life forms have been somewhat softened, much controversy remains as to their involvement in kidney stone formation as well as in other pathological calcifications. I suggest that such particles are non-living and may be formed during the normal living activities of bona-fide bacteria which inhabit the kidneys. This hypothesis is based on previous observations that bacteria immersed in a supersaturated fluid produce organic globules which calcify when released to the surrounding fluid, forming CNP-like particles. The possibility that this process is responsible for the formation of CNP associated with pathological calcifications deserves greater scrutiny

    LATE PLIOCENE-HOLOCENE DEBRIS FLOW DEPOSITS IN THE IONIAN SEA (EASTERN MEDITERRANEAN)

    Get PDF
    Widespread coring of the Eastern Mediterranean Basin has outlined the existence of a systematic relation between lithology of debris flow deposits and physiographic setting. Whilst the topographic highs are characterized by pelagic sedimentation, the basin floors are alternatively subject to pelagic sedimentation and re-sedimentation pro cesses. Amongst the latters, turbidity flows and debris flows are the most common transport mechanisms.In this paper we present the study of the debris flow pro cess in the Ionian Sea using visual description of cores, grain size, carbonate content and smear slide analysis carried out on gravity and piston cores recovered over the past 20 years. A distinction has been made between debris flow deposits originating from the continental margins (North Africa and Malta Escarpment) and those emplaced in the small basins amidst the Calabrian and Mediterranean ridges "Cobblestone Topography". As a result of the difference in setting, the former debris flow deposits include a great variety of lithologies and ages whilst the latter involve the pelagic sediments forming the typical Eastern Mediterranean Plio-Quaternary succession. A detailed study of clast and matrix structures makes it possible to describe the flows in terms of existing classifications of sediment gravity flows and to assume a clast support mechanism. Finally, biostratigraphy coupled with the presence of widespread marker beds enabled us to estimate the age of emplacement of the deposits and to hypothesize a triggering mechanism for flow initiation. Three flows are strictly related to the pelagic turbidite named homogenite, triggered by the explosive eruption of the Santorini volcano (Minoan eruption) and therefore have an estimated age of 3,500 BP. The other deposits have ages ranging from 9,000 BP to about 70,000 BP and were originated by debris flows triggered by events such as earthquakes and glacial low sea level stands.   &nbsp

    Environment-oriented selection criteria to overcome controversies in breeding for drought resistance in wheat

    Get PDF
    Wheat is one of the most important cereal crops, representing a fundamental source of calories and protein for the global human population. Drought stress (DS) is a widespread phenomenon, already affecting large wheat-growing areas worldwide, and a major threat for cereal productivity, resulting in consistent losses in average grain yield (GY). Climate change is projected to exacerbate DS incidence and severity by increasing temperatures and changing rainfall patterns. Estimating that wheat production has to substantially increase to guarantee food security to a demographically expanding human population, the need for breeding programs focused on improving wheat drought resistance is manifest. Drought occurrence, in terms of time of appearance, duration, frequency, and severity, along the plant's life cycle varies significantly among different environments and different agricultural years, making it difficult to identify reliable phenological, morphological, and functional traits to be used as effective breeding tools. The situation is further complicated by the presence of confounding factors, e.g., other concomitant abiotic stresses, in an open-field context. Consequently, the relationship between morpho-functional traits and GY under water deficit is often contradictory; moreover, controversies have emerged not only on which traits are to be preferred, but also on how one specific trait should be desired. In this review, we attempt to identify the possible causes of these disputes and propose the most suitable selection criteria in different target environments and, thus, the best trait combinations for breeders in different drought contexts. In fact, an environment-oriented approach could be a valuable solution to overcome controversies in identifying the proper selection criteria for improving wheat drought resistance

    Causes and consequences of the Messinian salinity crisis

    Get PDF
    Salt giants are massive salt deposits (at least hundreds of m thick) that form during the evaporation of semi-enclosed seas. However, the drivers of salt giant formation and their feedbacks on global and regional environmental change remain debated. In this Review, we summarize the boundary conditions, causes and consequences of the Mediterranean Messinian salinity crisis (MSC; 5.97-5.33 Ma), and highlight the impacts of salt extraction and ion return on the Earth system. Salt giant formation is more complex than the simple evaporation of an enclosed sea. Instead, the tectonic setting of an evaporative basin largely determines the timing and mode of salt formation, with superimposed impacts of orbital-scale climate and sea-level fluctuations. These drivers triggered precipitation of carbonates, gypsum, halite, and even bittern salts in the Mediterranean, with well-defined orbital cyclicities in carbonate and gypsum phases. Removal of Ca2+ during salt deposition decouples the oceanic Ca2+ and HCO3- sinks, causing a CaCO3 burial decrease and, consequently, increased ocean pH, lower atmospheric pCO2, and global cooling. Salt giants, which reflect a ~7 to 10 % net evaporite-ion extraction from oceans that persists over million-year timescales, could therefore be an important climatic driver, but are currently not considered in long-term carbon cycle models. Future research should target more advanced hydrogeochemical models of water exchange with the open ocean to provide critical context for understanding interactions between salt giants and environmental change

    An Exploratory Study of Field Failures

    Get PDF
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    Gender differences in pain and its relief

    Get PDF
    There is much evidence to suggest that gender is an important factor in the modulation of pain. Literature data strongly suggest that men and women differ in their responses to pain: they are more variable in women than men, with increased pain sensitivity and many more painful diseases commonly reported among women. Gender differences in pharmacological therapy and non-pharmacological pain interventions have also been reported, but these effects appear to depend on the treatment type and characteristics. It is becoming very evident that gender differences in pain and its relief arise from an interaction of genetic, anatomical, physiological, neuronal, hormonal, psychological and social factors which modulate pain differently in the sexes. Experimental data indicate that both a different modulation of the endogenous opioid system and sex hormones are factors influencing pain sensitivity in males and females. This brief review will examine the literature on sex differences in experimental and clinical pain, focusing on several biological mechanisms implicated in the observed gender-related differences. 

    Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology.

    Get PDF
    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague-Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution

    Eyes as Gateways for Environmental Light to the Substantia Nigra: Relevance in Parkinson’s Disease

    Get PDF
    Recent data indicates that prolonged bright light exposure of rats induces production of neuromelanin and reduction of tyrosine hydroxylase positive neurons in the substantia nigra. This effect was the result of direct light reaching the substantia nigra and not due to alteration of circadian rhythms. Here, we measured the spectrum of light reaching the substantia nigra in rats and analysed the pathway that light may take to reach this deep brain structure in humans. Wavelength range and light intensity, emitted from a fluorescent tube, were measured, using a stereotaxically implanted optical fibre in the rat mesencephalon. The hypothetical path of environmental light from the eye to the substantia nigra in humans was investigated by computed tomography and magnetic resonance imaging. Light with wavelengths greater than 600 nm reached the rat substantia nigra, with a peak at 709 nm. Eyes appear to be the gateway for light to the mesencephalon since covering the eyes with aluminum foil reduced light intensity by half. Using computed tomography and magnetic resonance imaging of a human head, we identified the eye and the superior orbital fissure as possible gateways for environmental light to reach the mesencephalon
    • …
    corecore