9 research outputs found

    FROM HEART MURMUR TO ECHOCARDIOGRAPHY CONGENITAL HEART DEFECTS DIAGNOSTICS USING MACHINELEARNING ALGORITHMS

    Get PDF
    The most common clinical sign in pediatric cardiology is heart murmur, which can often be uncharacteristic. The aim of this research was to present the results of development of a classifier based on machine learning algorithms whose purpose is to classify organic murmur that occur in congenital heart defect (CHD). The study is based on the data collected at Pediatric Clinic, Clinical Center University of Sarajevo during three-year period. Totally, 116 children aged from 1 to 15 years were enrolled in the study. Input parameters for classification are parameters obtained during basic physical examination and assessment of patient. First, analysis of relevance of the feature for classification was done using InfoGain, GainRatio, Relief and Correlation method. In the second step, classifiers based on Naive Bayes, Logistic Regression, Decision Tree, Random Forest and Support Vector Machine were developed and compared by performance. The results of this research suggest that high accuracy (>90%) classifier for detection of CHD based on 16 parameters can be developed. Such classifier with appropriate user interface would be valuable diagnostic aid to doctors and pediatricians at primary healthcare level for diagnostic of heart murmurs

    FROM HEART MURMUR TO ECHOCARDIOGRAPHY CONGENITAL HEART DEFECTS DIAGNOSTICS USING MACHINELEARNING ALGORITHMS

    Get PDF
    The most common clinical sign in pediatric cardiology is heart murmur, which can often be uncharacteristic. The aim of this research was to present the results of development of a classifier based on machine learning algorithms whose purpose is to classify organic murmur that occur in congenital heart defect (CHD). The study is based on the data collected at Pediatric Clinic, Clinical Center University of Sarajevo during three-year period. Totally, 116 children aged from 1 to 15 years were enrolled in the study. Input parameters for classification are parameters obtained during basic physical examination and assessment of patient. First, analysis of relevance of the feature for classification was done using InfoGain, GainRatio, Relief and Correlation method. In the second step, classifiers based on Naive Bayes, Logistic Regression, Decision Tree, Random Forest and Support Vector Machine were developed and compared by performance. The results of this research suggest that high accuracy (>90%) classifier for detection of CHD based on 16 parameters can be developed. Such classifier with appropriate user interface would be valuable diagnostic aid to doctors and pediatricians at primary healthcare level for diagnostic of heart murmurs

    A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings

    Get PDF
    Pneumonia is a leading cause of mortality in limited resource settings (LRS), which are common in low- and middle-income countries (LMICs). Accurate referrals can reduce the devastating impact of pneumonia, especially in LRS. Discriminating pneumonia from other respiratory conditions based only on symptoms is a major challenge. Machine learning has shown promise in overcoming the diagnostic difficulties of pneumonia (i.e., low specificity of symptoms, lack of accessible diagnostic tests and varied clinical presentation). Many scientific papers are now focusing on deep-learning methods applied to clinical images, which is unaffordable for initial patient referral in LMICs. The current study used a dataset of 4500 patients (1500 patients affected by bronchitis, 3000 by pneumonia) from a middle-income country, containing information on subject population characteristics, symptoms and laboratory test results. Manual feature selection was performed, focusing on clinical symptoms that are easily measurable in LRS and in community settings. Three common machine learning methods were tested and compared: logistic regression; decision tree and support vector machine. Models were developed through a holdout process of training-validation and testing. We focused on six clinically relevant, easily interpreted patient symptoms as best indicators for pneumonia. Our final model was a decision tree, achieving an AUC of 93%, with the advantage of being fully intelligible and easily interpreted. The performance achieved suggested that intelligible machine learning models can enhance symptom-based referral of pneumonia in LRS and in community settings

    International Conference on Medical and Biological Engineering 2017

    No full text
    This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering

    Testing of mechanical ventilators and infant incubators in healthcare institutions

    No full text
    The medical device industry has grown rapidly and incessantly over the past century. The sophistication and complexity of the designed instrumentation is nowadays rising and, with it, has also increased the need to develop some better, more effective and efficient maintenance processes, as part of the safety and performance requirements. This paper presents the results of performance tests conducted on 50 mechanical ventilators and 50 infant incubators used in various public healthcare institutions. Testing was conducted in accordance to safety and performance requirements stated in relevant international standards, directives and legal metrology policies. Testing of output parameters for mechanical ventilators was performed in 4 measuring points while testing of output parameters for infant incubators was performed in 7 measuring points for each infant incubator. As performance criteria, relative error of output parameters for mechanical ventilators and absolute error of output parameters for infant incubators was calculated. The ranges of permissible error, for both groups of devices, are regulated by the Rules on Metrological and Technical Requirements published in the Official Gazette of Bosnia and Herzegovina No. 75/14, which are defined based on international recommendations, standards and guidelines. All ventilators and incubators were tested by etalons calibrated in an ISO 17025 accredited laboratory, which provides compliance to international standards for all measured parameters. The results show that 30% of the tested medical devices are not operating properly and should be serviced, recalibrated and/or removed from daily application

    Application of Neural Networks for classification of Patau, Edwards, Down, Turner and Klinefelter Syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics

    No full text
    Abstract Background The usage of Artificial Neural Networks (ANNs) for genome-enabled classifications and establishing genome-phenotype correlations have been investigated more extensively over the past few years. The reason for this is that ANNs are good approximates of complex functions, so classification can be performed without the need for explicitly defined input-output model. This engineering tool can be applied for optimization of existing methods for disease/syndrome classification. Cytogenetic and molecular analyses are the most frequent tests used in prenatal diagnostic for the early detection of Turner, Klinefelter, Patau, Edwards and Down syndrome. These procedures can be lengthy, repetitive; and often employ invasive techniques so a robust automated method for classifying and reporting prenatal diagnostics would greatly help the clinicians with their routine work. Methods The database consisted of data collected from 2500 pregnant woman that came to the Institute of Gynecology, Infertility and Perinatology “Mehmedbasic” for routine antenatal care between January 2000 and December 2016. During first trimester all women were subject to screening test where values of maternal serum pregnancy-associated plasma protein A (PAPP-A) and free beta human chorionic gonadotropin (β-hCG) were measured. Also, fetal nuchal translucency thickness and the presence or absence of the nasal bone was observed using ultrasound. Results The architectures of linear feedforward and feedback neural networks were investigated for various training data distributions and number of neurons in hidden layer. Feedback neural network architecture out performed feedforward neural network architecture in predictive ability for all five aneuploidy prenatal syndrome classes. Feedforward neural network with 15 neurons in hidden layer achieved classification sensitivity of 92.00%. Classification sensitivity of feedback (Elman’s) neural network was 99.00%. Average accuracy of feedforward neural network was 89.6% and for feedback was 98.8%. Conclusion The results presented in this paper prove that an expert diagnostic system based on neural networks can be efficiently used for classification of five aneuploidy syndromes, covered with this study, based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. Developed Expert System proved to be simple, robust, and powerful in properly classifying prenatal aneuploidy syndromes
    corecore