281 research outputs found

    Heterogeneity of discontinuous carbon fibre composites: damage initiation captured by Digital Image Correlation

    Get PDF
    This paper aims to identify architectural features which lead to damage initiation and failure in discontinuous carbon fibre composites formed from randomly orientated bundles. A novel multi-camera digital image correlation system was used to simultaneously view strain fields from opposing surfaces of coupons, in order to map progression of failure. The highest strain concentrations were found to occur when the ends of fibre bundles aligned in the direction of loading coincided with underlying transverse bundles. The failure plane was observed to grow between a number of strain concentrations at critical features, coalescing sites of damage to create the final fracture surface. Although potential failure sites can be detected at low global strains in the form of strain concentrations, the strain field observed at low applied loads cannot be extrapolated to reliably predict final failure

    Absence of nuclear polycyclic aromatic hydrocarbon emission from a compact starburst: the case of the type-2 quasar Mrk 477

    Get PDF
    Mrk 477 is the closest type-2 quasar, at a distance of 163 Mpc. This makes it an ideal laboratory for studying the interplay between nuclear activity and star formation with a great level of detail and signal-to-noise. In this Letter we present new mid-infrared (mid-IR) imaging and spectroscopic data with an angular resolution of 0.4″ (∼300 pc) obtained with the Gran Telescopio Canarias instrument CanariCam. The N-band (8–13 μm) spectrum of the central ∼400 pc of the galaxy reveals [S IV]λ10.51 μm emission, but no 8.6 or 11.3 μm polycyclic aromatic hydrocarbon (PAH) features, which are commonly used as tracers of recent star formation. This is in stark contrast with the presence of a nuclear starburst of ∼300 pc in size, an age of 6 Myr, and a mass of 1.1×108 M⊙, as constrained from ultraviolet Hubble Space Telescope observations. Considering this, we argue that even the more resilient, neutral molecules that mainly produce the 11.3 μm PAH band are most likely being destroyed in the vicinity of the active nucleus despite the relatively large X-ray column density, log NH = 23.5 cm−2, and modest X-ray luminosity, 1.5×1043 erg s−1. This highlights the importance of being cautious when using PAH features as star formation tracers in the central region of galaxies to evaluate the impact of feedback from active galactic nuclei
    corecore