17 research outputs found
A symbolic homecoming: 3D digital imaging of Greek vases from the MHNC-UP
One of the most interesting Portuguese-German diplomatic
relations is associated with the imprisonment of a ship in Lisbon during World War
I. Bringing this centenary story, which took place between 1914 and 1927, back to
light seemed appropriate due to its strong symbolic charge: some of the pieces
contemplated in the events we will soon be remembering are symbolically returning
home. The subject is not new, however, as it has already been the subject of a
number of publications, including by one of the proponents of this study. But the
approach presented here is naturally different, as it falls within one of the themes
under discussion at this meeting, 3D digital analysis methods and techniques. This
approach has already been considered several times by another of the proponents
of this study, one of which included four Greek vases from different productions
and periods from the Museum of Natural History and Science of the University of
Porto (MHNC-UP) that we will be discussing
Understanding Virtual Objects through Reverse Engineering
[EN] The main objective of our research is to develop a new methodology, based on Reverse Engineering processes – 3D scan, quantitative data analysis and Artificial Intelligence techniques, in particular simulation – to study the relationship between form and function of artefacts. Furthermore, we aim to provide new data, as well as possible explanations of the archaeological record according to what it expects about social activity, including working processes, by simulating the potentialities of such actions in terms of input-output relationships.[ES] El principal objetivo de nuestra investigación consiste en desarrollar una nueva metodología de análisis e interpretación de artefactos arqueológicos para el estudio de la relación entre forma y función de los artefactos. El fundamento de nuestra propuesta es un enfoque basado en técnicas de Ingeniería Inversa que partiendo de datos visuales procedentes de escaneo 3D, los pone en relación con las consecuencias esperadas de las acciones sociales que tuvieron lugar en el pasado en un enfoque de Inteligencia Artificial y análisis cuantitativo de datos. Además, nuestro trabajo está basado en la nueva manera de “ver” la realidad arqueológica. El procedimiento consiste en la “simulación” computacional de la cinemática de esas acciones y ele estudio de las características geométricas y visuales de sus consecuencias potenciales, expresando los resultados en términos de relaciones entrada-salida.This research is funded by the Spanish Ministry for Scienc and Innovation, under grant No. HAR2009-12258, and it is a part of the joint
research team “Social and environmental transitions: Simulating the past to understand human behaviour (SimulPast)” (www.simulpast.es),
funded by the same national agency under the program CONSOLIDER-INGENIO 2010, CSD2010-00034. This research also benefits
from Vera Moitinho’s Ph. D. grant from the Fundação para a Ciência e Tecnologia (FCT), Portugal.Moitinho De Almeida, V.; Barceló, JA. (2012). Understanding Virtual Objects through Reverse Engineering. Virtual Archaeology Review. 3(7):14-17. https://doi.org/10.4995/var.2012.4372OJS141737BARCELO, J. A. (2010): "Visual Analysis in Archaeology. An Artificial Intelligence Approach", in Morphometrics for Nonmorphometricians, edited by E.M.T. Elewa. Springer.http://dx.doi.org/10.1007/978-3-540-95853-6_5BATHOW, Christiane and WACHOWIAK, Mel (2008): "3D Scanning in Truly Remote Areas", in Coordinate Metrology Systems Conference - CMSC, Charlotte, NC. http://www.accurexmeasure.com/applicationpages/3d%20scanning%20in%20remote%20areas.pdf [View: 24-03-2011].BERALDIN, J.-A. (2004): "Integration of Laser Scanning and Close-range Photogrammetry - The last Decade and Beyond". http://www.isprs.org/proceedings/XXXV/congress/comm5/papers/188.pdf [View: 24-03-2011].DENNET, Daniel (1991): "Cognitive Science as Reverse Engineering: Several Meanings of 'Top-Down' and 'Bottom-Up'", final draft for Proceedings of the 9th International Congress of Logic, Methodology and Philosophy of Science. http://users.ecs.soton.ac.uk/harnad/Papers/Py104/dennett.eng.html [View: 24-03-2011].EILAM, Eldad (2005): Reversing: Secrets of Reverse Engineering. Wiley Publishing, Indianapolis.GEORGOPOULOS, Andreas et al. (2010): "Assessing the Performance of a Structured Light Scanner", in Commission V Symposium. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(5). http://www.isprs.org/proceedings/XXXVIII/part5/papers/177.pdf [View: 24-03-2011].KAMAT, V. R. and MARTINEZ, J. C. (2007): "Variable-speed object motion in 3D visualizations of discrete-event construction simulation models". ITcon, Vol. 12, pp. 293-303, http://www.itcon.org/2007/20 [View: 24-03-2011].MARA, Hubert et al. (2004): "The Uniformity of Wheel Produced Pottery Deduced from 3D Image Processing and Scanning", in Proceedings of the 28th Workshop of the Austrian Association for Pattern Recognition - OAGM/AAPR, Digital Imaging in Media and Education. W. Burger, J. Scharinger (ed.). Schriftenreihe der OCG, no 179, pp. 197-204.MOITINHO, Vera (2007): "Virtual Archaeology: Work in Progress", in Proceedings of the 35th Computer Applications and Quantitative Methods in Archaeology Congress, CAA 2007.PERROS, Harry (2009): "Computer Simulation Techniques: The definitive introduction!". Computer Science Department - NC State University, Raleigh, NC. http://www4.ncsu.edu/~hp/simulation.pdf [View: 24-03-2011].RAJA, Vinesh and FERNANDES, K. J. (ed.) (2008): Reverse Engineering: An Industrial Perspective. Springer-Verlag, London.REICHENBACH, Tomislav and KOVAČIĆ, Zdenko (2003): "Derivation of Kinematic Parameters from a 3D Robot Model Used for Collision-free Path Planning", in Proceedings of the 11th Mediterranean Conference on Control and Automation, MED '03. http://med.ee.nd.edu/MED11/pdf/papers/t2-039.pdf [View: 24-03-2011].USAIT: "Glossary", in U. S. Army Information Technology Agency, http://ita.army.mil/CatalogService.aspx?service_Id=122&serviceGroup_Id=9 [View: 24-03-2011].WANG, Wego (2011): Reverse Engineering: Technology of Reinvention. CRC Press
Computer Simulation of Multidimensional Archaeological Artefacts
[EN] The main purpose of this ongoing research is to understand possible function(s) of archaeological artefacts through Reverse Engineering processes. In addition, we intend to provide new data, as well as possible explications of the archaeological record according to what it expects about social activities and working processes, by simulating the potentialities of such actions in terms of input-output relationships.Our project focuses on the Neolithic lakeside site of La Draga (Banyoles, Catalonia). In this presentation we will begin by providing a clear overview of the major guidelines used to capture and process 3D digital data of several wooden artefacts. Then, we shall present the use of semi-automated relevant feature extractions. Finally, we intend to share preliminary computer simulation issues.[ES] El principal propósito de esta investigación consiste en comprender la(s) función(es) más probable(s) de los artefactos arqueológicos a través de un proceso de Ingeniería Inversa. Además, intentamos proporcionar nuevos datos y, en la medida de lo posible, explicaciones, del registro arqueológico de acuerdo con lo quesabemos de las actividades sociales y procesos de trabajo, por medio de la simulación de las potencialidades de esas acciones en términos de relaciones input-output. Nuestro proyecto se centra en el sitio lacustre neolítico de La Draga (Banyoles, Girona). En este artículo empezamos proporcionando un resumen exhaustivo de losprocedimientos usados para capturar y procesar datos digitales 3D de diversos objetos de madera. A continuación presentamos el uso de métodos semi-automáticos de extracción de rasgos relevantes. Finalmente, se discuten cuestiones preliminares acerca de simulación computacional.This research is part of the project PADICAT ("Patrimoni Digital Arqueològic de Catalunya), funded by the Obra Social la Caixa and the
Asociació d'Universitats Catalanes (Programa RecerCaixa, RECER2010-05), as well as of the project "Social and environmental
transitions: Simulating the Past to understand human behaviour", funded by the Spanish Ministry for Science and Innovation, under the
program CONSOLIDER-INGENIO 2010, CSD2010-00034. This research also benefits from Vera Moitinho’s Ph. D. grant from the
Fundação para a Ciência e Tecnologia (FCT), Portugal.Moitinho De Almeida, V.; Barceló, JA. (2012). Computer Simulation of Multidimensional Archaeological Artefacts. Virtual Archaeology Review. 3(7):77-81. https://doi.org/10.4995/var.2012.4392OJS778137D-COFORM (2009): "D.2.1 - Initial version of 'User Requirement analysis and Functional Specifications' (version 8)". 3DCOFORM Consortium.http://www.3d-coform.eu/downloads/D_2_1_User_Req_and_Fnctl_Specs_online.pdf [View: 12-03-2012].BOSCH, Angel, CHINCHILLA, Julia, TARRUS, Josep et al (2006): "Els objectes de fusta del poblat neolític de la Draga. Excavacions de 1995- 2005", in Monografies del CASC, 6. Girona.FOREST PRODUCTS LABORATORY (1999): "Wood Handbook - Wood as an Engineering Material". Department of Agriculture, Forest Service. Madison, WI.KAMAT, Vineet, MARTINEZ, Julio (2007): "Variable-speed object motion in 3D visualizations of discrete-event construction simulation models", in ITcon, 12: 293-303. http://www.itcon.org/2007/20 [View: 12-03-2012].MOITINHO, Vera, BARCELO, Juan Anton (2012): "3D Scanning and Computer Simulation of Archaeological Artefacts", in Proceedings of the 1st International Conference on Best Practices in World Heritage: Archaeology (in press). Menorca.MOITINHO, Vera, BARCELO, Juan Anton (2011): "Understanding Virtual Objects through Reverse Engineering", in Proceedings of the III Congreso Internacional de Arqueología e Informática Gráfica, Patrimonio e Innovación, Arqueológica 2.0 (in press). Seville.PADICAT (2010): "Patrimoni Digital Arqueològic de Catalunya". http://www.recercaixa.cat/ca/ArxiuDeVideos/Video_JuanAntonioBarceloAlvarez.html [View: 12-03-2012].PAPATHEODOROU, Christos et al. (2012): "The CARARE metadata schema". Europeana CARARE project.http://www.carare.eu/eng/Resources/CARARE-metadata-schema-outline-v1.0 [View: 12-03-2012].PERROS, Harry (2009): "Computer Simulation Techniques: The definitive introduction!". Computer Science Department - NC State University, Raleigh, NC. http://www4.ncsu.edu/~hp/simulation.pdf [View: 12-03-2012].REICHENBACH, Tomislav, KOVAČIĆ, Zdenko (2003): "Derivation of Kinematic Parameters from a 3D Robot Model Used for Collision-free Path Planning", in Proceedings of the 11th Mediterranean Conference on Control and Automation, MED '03. http://med.ee.nd.edu/MED11/pdf/papers/t2-039.pdf [View: 12-03-2012].SOLIDWORKS (2012): Solidworks. Dassault Systemes. http://www.solidworks.com/ [View: 12-03-2012].TARRUS, Josep (2008): "La Draga (Banyoles, Catalonia), an Early Neolithic Lakeside Village in Mediterranean Europe", in Catalan Historical Review, 1:17-33. Institut d'Estudis Catalans, Barcelona. http://revistes.iec.cat/chr/ [View: 12-03-2012]
Espaços museológicos virtuais : a villa romana do rabaçal, estudo de caso
Tese de mestrado. Tecnologia Multimédia. Faculdade de Engenharia. Universidade do Porto. 200
Towards functional analysis of archaeological objects through reverse engineering processes
La arqueología es una disciplina 'visual' por excelencia, ya que la percepción visual nos permite tomar conciencia de las propiedades fundamentales de los objetos: tamaño, orientación, forma, color, textura, posición en el espacio, distancia o todas estas características al mismo tiempo. En este trabajo se asume que la conducta humana en el pasado puede estudiarse a partir del examen de los elementos arqueológicos observables en el presente. De igual modo, se considera que también existen rasgos no visuales que caracterizan los objetos y materiales en el pasado. La información que nos permite entender muchas de las propiedades funcionales de los objetos es de naturaleza multidimensional: el tamaño refiere a la altura, longitud, profundidad, peso y masa; la forma, refiere a la geometría que define superficies y volúmenes; textura, a la microtopografía y aspecto visual; y por último a la composición del material, es decir, a la combinación de los distintos elementos que forman el total y la manera en que tales partes se combinan. Esta investigación se basa en una idea más general de la percepción (del Latín perceptio, percipio), usualmente definida como la organización, identificación e interpretación de la información sensorial con el fin de representar y entender el entorno. No debe entenderse como una recepción pasiva de estas señales, más bien como la integración del aprendizaje, la memoria, y las expectativas. Esta investigación explora diferentes maneras de entender la idea de percepción arqueológica, que incluye el proceso bottom-up del procesamiento de información sensorial, así como los efectos top-down. El proceso bottom-up es básicamente la información de bajo nivel que se utiliza para construir la información de alto nivel (por ejemplo, formas y texturas para el reconocimiento de objetos y la explicación funcional). El proceso top-down se refiere al concepto y a las expectativas (conocimiento) que influencian la percepción. El enfoque adoptado sigue las teorías computacionales actuales sobre la percepción de objetos que intentan proponer nuevas vías explicativas acerca de las conductas humanas en el pasado, a partir del análisis de datos visuales y no visuales, teniendo en cuenta que las apariencias visuales y incluso las características de composición sólo limitan la forma en que un objeto puede ser utilizado, pero nunca lo determinan totalmente. En este trabajo sugiero que las propiedades perceptivas deberían ser rigurosamente medidas y codificadas para poder llegar a entender cómo se produjeron y/o se utilizaron los objetos en el pasado. Hasta ahora, la insuficiencia y la falta de un consenso claro sobre los métodos tradicionales de descripción de los objetos - sobre todo visual, ambigua, subjetiva y cualitativa - han conducido invariablemente a unas interpretaciones ambiguas y subjetivas. Por consiguiente, es muy importante sistematizar, formalizar y estandarizar métodos y procedimientos más objetivos, exactos, matemáticos y cuantitativos, y siempre que sea posible automatizarlos. Es en este contexto, se ha intentado desarrollar una metodología basada en modelos digitales tridimensionales para medir, describir cuantitativamente y analizar el uso y el comportamiento de los objetos arqueológicos. También, se intenta comprender las posibles relaciones entre la geometría, el material, y la(s) función(es) de los objetos arqueológicos al sugerir nuevas maneras de estudiar formas de comportamiento pasadas que puedan ser confirmadas a partir del examen de los observables arqueológicos en el presente.Archaeology seems to be a quintessentially 'visual' discipline, because visual perception makes us aware of such fundamental properties of objects as their size, orientation, form, colour, texture, spatial position, distance, all at once. I assume that human behaviour in the past can be asserted on the examination of archaeological observables in the present. In any case, I take into account that there are also non visual features characterizing ancient objects and materials. Information that should make us aware of many functional properties of objects is multidimensional in nature: size, which makes reference to height, length, depth, weight and mass; shape and form, which make reference to the geometry of contour, surfaces and volume; texture, which refers to microtopography (roughness, waviness, and lay) and visual appearance (colour variations, brightness, reflectivity and transparency); and finally material composition, meaning the combining of distinct elements to form a whole, and the manner in which such parts are combined. This research is based on the more global idea of Perception (from the Latin perceptio, percipio), usually defined as the organization, identification, and interpretation of sensory information in order to represent and understand the environment. It should be understood not as the passive receipt of these signals, but the integration of learning, memory, and expectation. This research explores different ways of understanding the very idea of archaeological perception, which involves top-down effects as well as the bottom-up process of processing some sensory input. The bottom-up processing is basically low-level information that's used to build up higher-level information (e.g., shapes, forms and textures for object recognition and functional explanation). The top-down processing refers to an archaeologist's concept and expectations (knowledge) that influence perception. The approach adopted here is to follow current computational theories of object perception to ameliorate the way archaeology can deal with the explanation of human behaviour in the past (function) from the analysis of visual and non-visual data, taking into account that visual appearances and even compositional characteristics only constrain the way an object may be used, but never fully determine it. I suggest that perceptual properties should be rigorously measured and coded if archaeologists intend to understand how objects were produced and/or used in the past. The insufficiency and lack of a clear consensus on the traditional methods of form description - mostly visual, descriptive, ambiguous, subjective and qualitative - have invariably led to ambiguous and subjective interpretations of its functions. It is thus strongly advisable to systematize, formalize and standardize methods and procedures more objective, precise, mathematical and quantitative, and whenever possible automated. In this context, I intend to develop a framework based on three dimensional geometrical digital models to measure, describe, test and analyse the use and behaviour of archaeological artefacts. I try to understand the possible relationships between the geometry, material, and function(s) of archaeological artefacts by suggesting new ways of studying the way behaviour in the past can be asserted on the examination of archaeological observables in the present. In this research, a novel framework is applied to three case studies which span a broad diachrony ranging from the Palaeolithic in Cantabria to the Neolithic in Catalonia, Spain. In respect to the archaeological objects, these encompass rock art, sculptures, lithics, and bows, as well as a wide variety of raw-materials. Each case study addresses its own archaeological questions, has particular aims, and therefore approaches. They are not intended to be exhaustive, but to provide a rounded picture in terms of the framework's potentialities and effectiveness
Understanding data reuse and barriers to reuse of archaeological data: a quality-in-use methodological approach
Over the last decade, innovation has centred on making archaeological data more interoperable, increasing the discoverability of data through integrated cross-search and facilitating knowledge creation by combining data in new ways. An emerging research challenge for the next decade is optimising archaeological data for reuse and defining what constitutes good practice around reuse. Critical to this research is understanding the current state-of-the-art regarding both existing best practices and barriers to using and reusing archaeological data. This research aimed to understand how to optimise archives and interfaces to maximise the discovery, use and reuse of archaeological data and explore how archaeological archives can better respond to user needs.
The study was bound by (i) the reuse of digital archaeological archives; (ii) orientation to content usability and reusability; (iii) maintaining a user-orientated approach; (iv) collecting data from professionals in archaeology and heritage. The research group members adopted the quality-in-use conceptual approach for this study. Quality in use is 'the degree to which a product or system can be used by specific users to meet their needs to achieve specific goals with effectiveness, efficiency, satisfaction, and freedom from risk in specific contexts of use'. The research methodology is based on the SQuaRE (System and Software Quality Requirements and Evaluation) model, represented in the ISO/IEC 25000 standards series. In addition, the quality-in-use metric for investigation of reuse and barriers to reuse of archaeological data were adopted from the standardised measurement functions and methods of ISO/IEC 25022:2016. The result was a methodological model composed of 5 characteristics (Effectiveness, Efficiency, Satisfaction, Context coverage and Usability) with 14 measures (Task completeness, Objectives achievement, Task time, Cost-effectiveness, Overall satisfaction, Satisfaction with features, User trust in the system, data and paradata, User pleasure, Physical comfort, Context completeness, Flexible context of use and User guidance completeness). The methodology was tested with specific Contexts of use (use cases), orientated to a distinct user with the specific professional goal of data reuse. Three use cases relating to 3D Pottery, radiocarbon, and GIS data were created. The pilot study has proven that the methodology works and could be applied in future research. This article discusses the application of the quality-in-use approach for evaluating the quality of digital archaeological archives, as well as presenting the methodology and the results of the pilot study
Towards Functional Analysis of Archaeological Objects through Reverse Engineering Processes
La arqueología es una disciplina ‘visual’ por excelencia, ya que la percepción visual nos permite tomar conciencia de las propiedades fundamentales de los objetos: tamaño, orientación, forma, color, textura, posición en el espacio, distancia o todas estas características al mismo tiempo. En este trabajo se asume que la conducta humana en el pasado puede estudiarse a partir del examen de los elementos arqueológicos observables en el presente. De igual modo, se considera que también existen rasgos no visuales que caracterizan los objetos y materiales en el pasado. La información que nos permite entender muchas de las propiedades funcionales de los objetos es de naturaleza multidimensional: el tamaño refiere a la altura, longitud, profundidad, peso y masa; la forma, refiere a la geometría que define superficies y volúmenes; textura, a la microtopografía y aspecto visual; y por último a la composición del material, es decir, a la combinación de los distintos elementos que forman el total y la manera en que tales partes se combinan.
Esta investigación se basa en una idea más general de la percepción (del Latín perceptio, percipio), usualmente definida como la organización, identificación e interpretación de la información sensorial con el fin de representar y entender el entorno. No debe entenderse como una recepción pasiva de estas señales, más bien como la integración del aprendizaje, la memoria, y las expectativas. Esta investigación explora diferentes maneras de entender la idea de percepción arqueológica, que incluye el proceso bottom-up del procesamiento de información sensorial, así como los efectos top-down. El proceso bottom-up es básicamente la información de bajo nivel que se utiliza para construir la información de alto nivel (por ejemplo, formas y texturas para el reconocimiento de objetos y la explicación funcional). El proceso top-down se refiere al concepto y a las expectativas (conocimiento) que influencian la percepción.
El enfoque adoptado sigue las teorías computacionales actuales sobre la percepción de objetos que intentan proponer nuevas vías explicativas acerca de las conductas humanas en el pasado, a partir del análisis de datos visuales y no visuales, teniendo en cuenta que las apariencias visuales y incluso las características de composición sólo limitan la forma en que un objeto puede ser utilizado, pero nunca lo determinan totalmente.
En este trabajo sugiero que las propiedades perceptivas deberían ser rigurosamente medidas y codificadas para poder llegar a entender cómo se produjeron y/o se utilizaron los objetos en el pasado. Hasta ahora, la insuficiencia y la falta de un consenso claro sobre los métodos tradicionales de descripción de los objetos - sobre todo visual, ambigua, subjetiva y cualitativa - han conducido invariablemente a unas interpretaciones ambiguas y subjetivas. Por consiguiente, es muy importante sistematizar, formalizar y estandarizar métodos y procedimientos más objetivos, exactos, matemáticos y cuantitativos, y siempre que sea posible automatizarlos.
Es en este contexto, se ha intentado desarrollar una metodología basada en modelos digitales tridimensionales para medir, describir cuantitativamente y analizar el uso y el comportamiento de los objetos arqueológicos. También, se intenta comprender las posibles relaciones entre la geometría, el material, y la(s) función(es) de los objetos arqueológicos al sugerir nuevas maneras de estudiar formas de comportamiento pasadas que puedan ser confirmadas a partir del examen de los observables arqueológicos en el presente.Archaeology seems to be a quintessentially ‘visual’ discipline, because visual perception makes us aware of such fundamental properties of objects as their size, orientation, form, colour, texture, spatial position, distance, all at once. I assume that human behaviour in the past can be asserted on the examination of archaeological observables in the present. In any case, I take into account that there are also non visual features characterizing ancient objects and materials. Information that should make us aware of many functional properties of objects is multidimensional in nature: size, which makes reference to height, length, depth, weight and mass; shape and form, which make reference to the geometry of contour, surfaces and volume; texture, which refers to microtopography (roughness, waviness, and lay) and visual appearance (colour variations, brightness, reflectivity and transparency); and finally material composition, meaning the combining of distinct elements to form a whole, and the manner in which such parts are combined.
This research is based on the more global idea of Perception (from the Latin perceptio, percipio), usually defined as the organization, identification, and interpretation of sensory information in order to represent and understand the environment. It should be understood not as the passive receipt of these signals, but the integration of learning, memory, and expectation. This research explores different ways of understanding the very idea of archaeological perception, which involves top-down effects as well as the bottom-up process of processing some sensory input. The bottom-up processing is basically low-level information that’s used to build up higher-level information (e.g., shapes, forms and textures for object recognition and functional explanation). The top-down processing refers to an archaeologist’s concept and expectations (knowledge) that influence perception.
The approach adopted here is to follow current computational theories of object perception to ameliorate the way archaeology can deal with the explanation of human behaviour in the past (function) from the analysis of visual and non-visual data, taking into account that visual appearances and even compositional characteristics only constrain the way an object may be used, but never fully determine it.
I suggest that perceptual properties should be rigorously measured and coded if archaeologists intend to understand how objects were produced and/or used in the past. The insufficiency and lack of a clear consensus on the traditional methods of form description – mostly visual, descriptive, ambiguous, subjective and qualitative – have invariably led to ambiguous and subjective interpretations of its functions. It is thus strongly advisable to systematize, formalize and standardize methods and procedures more objective, precise, mathematical and quantitative, and whenever possible automated.
In this context, I intend to develop a framework based on three dimensional geometrical digital models to measure, describe, test and analyse the use and behaviour of archaeological artefacts. I try to understand the possible relationships between the geometry, material, and function(s) of archaeological artefacts by suggesting new ways of studying the way behaviour in the past can be asserted on the examination of archaeological observables in the present.
In this research, a novel framework is applied to three case studies which span a broad diachrony ranging from the Palaeolithic in Cantabria to the Neolithic in Catalonia, Spain. In respect to the archaeological objects, these encompass rock art, sculptures, lithics, and bows, as well as a wide variety of raw-materials. Each case study addresses its own archaeological questions, has particular aims, and therefore approaches. They are not intended to be exhaustive, but to provide a rounded picture in terms of the framework´s potentialities and effectiveness