552 research outputs found

    Observation of new quantum interference effect in solids

    Full text link
    In order to achieve quantum interference of free electrons inside a solid, we have modified the geometry of the solid so that de Broglie waves interfere destructively inside the solid. Quantum interference of de Broglie waves leads to a reduction in the density of possible quantum states of electrons inside the solid and increases the Fermi energy level. This effect was studied theoretically within the limit of the quantum theory of free electrons inside the metal. It has been shown that if a metal surface is modified with patterned indents, the Fermi energy level will increase and consequently the electron work function will decrease. This effect was studied experimentally in both Au and SiO2 thin films of special geometry and structure. Work function reductions of 0.5 eV in Au films and 0.2 eV in SiO2 films were observed. Comparative measurements of work function were made using the Kelvin Probe method based on compensation of internal contact potential difference. Electron emission from the same thin films was studied by two independent research groups using Photoelectron Emission Microscopy (PEEM).Comment: 11 pages, 5 figure

    Additive Manufacturing for the Rapid Prototyping of Economical Biosensors

    Get PDF
    Current methods of developing wearable electronics through reductive manufacturing pose a substantial ecological footprint. To address this issue, it is imperative to investigate alternative additive manufacturing techniques. Aerosol jet printing (AJP) is a promising approach that relies on the optimization of gas flow rates and ink rheology to produce high-resolution printed structures. Implementing a low-intensity layered delamination approach to synthesize titanium carbide MXene, and further produce MXene ink, reduces environmental impact while enhancing the device performance. MXene ink yields desirable rheology, including viscosity, surface tension, density, and contact angles compatible with AJP technique. In terms of cost, ecological effect, time, and process development, traditional manufacturing exacerbates the level of e-waste produced. However, this additive manufacturing technique offers a unique solution for rapidly prototyping and manufacturing economical biosensors while minimizing resource consumption, reducing environmental impact, and addressing the growing issue of e-waste

    Dual-Specificity Phosphatases in Neuroblastoma Cell Growth and Differentiation

    Get PDF
    Dual-specificity phosphatases (DUSPs) are important regulators of neuronal cell growth and differentiation by targeting proteins essential to neuronal survival in signaling pathways, among which the MAP kinases (MAPKs) stand out. DUSPs include the MAPK phosphatases (MKPs), a family of enzymes that directly dephosphorylate MAPKs, as well as the small-size atypical DUSPs, a group of low molecular-weight enzymes which display more heterogeneous substrate specificity. Neuroblastoma (NB) is a malignancy intimately associated with the course of neuronal and neuroendocrine cell differentiation, and constitutes the source of more common extracranial solid pediatric tumors. Here, we review the current knowledge on the involvement of MKPs and small-size atypical DUSPs in NB cell growth and differentiation, and discuss the potential of DUSPs as predictive biomarkers and therapeutic targets in human NB.This work was partially supported by the grants: BIO13/CI/001/BC from BIOEF (EITB maratoia), Basque Country, Spain; SAF2013-48812-R from the Ministerio de Educacion y Ciencia (to R.P.), and SAF2016-79847-R from the Ministerio de Economia y Competitividad (Spain and Fondo Europeo de Desarrollo Regional) (to R.P. and J.I.L.); and 239813 from the Research Council of Norway (to C.E.N-X.)

    A world of cobenefits : solving the global nitrogen challenge

    Get PDF
    Houlton, Benjamin Z. University of California. John Muir Institute of the Environment. Davis, CA, USA.Houlton, Benjamin Z. University of California. Department of Land, Air and Water Resources. Davis, CA, USA.Almaraz, Maya. University of California. Department of Land, Air and Water Resources. Davis, CA, USA.Aneja, Viney. North Carolina State University at Raleigh. Department of Marine, Earth, and Atmospheric Sciences. Raleigh, NC, USA.Austin, Amy T. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Austin, Amy T. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Bai, Edith. Chinese Academy of Sciences. Institute of Applied Ecology. CAS Key Laboratory of Forest Ecology and Management. Shenyang, China.Bai, Edith. Northeast Normal University. School of Geographical Sciences. Changchun, China.Cassman, Kenneth. University of Nebraska – Lincoln. Department of Agronomy and Horticulture. Lincoln. NE, USA.Compton, Jana E. Environmental Protection Agency. Western Ecology Division. Washington, DC, USA.Davidson, Eric A. University of Maryland Center for Environmental Science. Appalachian Laboratory. Cambridge, MD, USA.865-872Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation

    Stellar 36,38^{36,38}Ar(n,γ)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,γ)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,γ)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies

    Get PDF
    Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti

    Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene), under ultrasonic fatigue testing

    Get PDF
    Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene), under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a) The applying load was low to limit heat dissipation at the specimen neck section, b) The dimensions of testing specimen were small (but fitting the resonance condition), in order to restraint the temperature gradient at the specimen narrow section, c) Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack lengt

    Influence of live cells or cells extract of Saccharomyces cerevisiae on in vitro gas production of a total mixed ration

    Get PDF
    In vitro gas production An interaction effect was observed (P=0.009) between treatment type and treatment dose for the asymptotic GP without interaction effects (P>0.05) for the rate of GP and the initial delay before gas production begins. In general, incubation of yeast CE improved (P=0.0007) the asymptotic GP compared to control and yeast LC. In both of CE and LC, the low and the intermediate doses were morelive cells (LC) or cells extract (CE) on in vitro gas production (GP) kinetics and ruminal fermentation parameters of a total mixed ration (TMR) consisting of commercial concentrate and alfalfa hay [1:1 dry matter (DM)] as a substrate was studied. The TMR was incubated with CE at 1, 2 and 4 mg/g or LC at 0.3, 0.6 and 0.9 mg/g DM for 96 h. Rumen GP was recorded after 6, 12, 19, 24, 48, 72 and 96 h of incubation. Interaction effects were observed (P<0.01) between treatment type and yeast dose for the asymptotic GP and methane (CH4) production. Incubation of yeast CE improved (P<0.01) the asymptotic GP compared to control and LC with greater effects (P<0.01) for the low and the intermediate doses. Yeast CE treatment was more effective (P<0.01) in GP than both of LC and control treatments with greater effect (P<0.01) for the low and the intermediate doses. Treatment type and yeast dose affected (P<0.01) CH4 production, metabolisable energy (ME), and short chain fatty acids (SCFA) without affecting in vitro DM degradability (IVDMD). Higher values (P<0.01) of CH4, ME, SCFA and IVDMD were observed for the yeast CE treatment. It could be concluded that adding yeast S. cerevisiae (CE and LC extract) improved GP and ruminal fermentation parameters, where CE at 0.3 and 0.6 mg/g DM was more effective than the yeast LC

    A compactness theorem for scalar-flat metrics on manifolds with boundary

    Full text link
    Let (M,g) be a compact Riemannian manifold with boundary. This paper is concerned with the set of scalar-flat metrics which are in the conformal class of g and have the boundary as a constant mean curvature hypersurface. We prove that this set is compact for dimensions greater than or equal to 7 under the generic condition that the trace-free 2nd fundamental form of the boundary is nonzero everywhere.Comment: 49 pages. Final version, to appear in Calc. Var. Partial Differential Equation
    corecore